Comparison of Activation Functions in Recurrent Neural Network for Litecoin Cryptocurrency Price Prediction
Abstract
The rapid advancement of information technology and digitalization has significantly transformed the financial sector, particularly with the emergence of cryptocurrencies characterized by high price volatility and complex movement patterns. Accurate price prediction of these crypto assets is essential to support investment decision-making and risk management. This study aims to compare the performance of six activation functions ReLU, Tanh, Sigmoid, Softplus, Swish, and Mish in a Simple Recurrent Neural Network (RNN) model for predicting the price of Litecoin, a widely traded cryptocurrency. Using historical daily closing price data from May 2020 to April 2025, the data were preprocessed through Min-Max normalization and sliding window sequence formation to fit the RNN input requirements. Each activation function was applied in the RNN model under consistent training conditions, and model performance was evaluated using Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and coefficient of determination (R²). Results indicate that the Swish activation function outperforms others by achieving the lowest RMSE of 4.58 and the highest R² score of 0.9578, demonstrating superior prediction accuracy and stable convergence. Tanh also showed competitive results, while Sigmoid and Softplus performed less effectively. In conclusion, Swish is recommended as the most suitable activation function for RNN-based cryptocurrency price forecasting due to its balance of accuracy and computational efficiency.Published
Issue
Section
Copyright (c) 2025 Siti Hadiaty Yuningsih; Muhammad Iqbal Al-Banna Ismail

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
With the receipt of the article by Editorial Board of the International Journal of Global Operations Research (IJGOR) and it was decided to be published, then the copyright regarding the article will be diverted to IJGOR
International Journal of Global Operations Research (IJGOR) hold the copyright regarding all the published articles and has the right to multiply and distribute the article under Creative Commons Atribusi 4.0 Internasional.
Copyright tranfer statement the author to the journal is done through filling out the copyright transfer form by author. The form can be downloaded HERE.