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Abstract

Stocks are one of the most widely used financial market instruments by investors in investing. The most important component of
any investment is volatility. Volatility is a conditional measure of variance in stock returns and is important for risk management.
In addition to volatility, the important things in investing are return and risk. Risk can be measured using Value-at-Risk (VaR)
and can estimate the maximum loss that occurs. The purpose of this study is to determine VaR using the Autoregressive Moving
Average-Glosten Jagannatan Runkle-Generalized Autoregressive Conditional Heteroscedasticity (ARMA-GJR-GARCH) model.
The stages of data analysis used are estimating the ARMA model and the GARCH model, then estimating the GJR-GARCH
model by looking at the heteroscedasticity and asymmetric effects on the GARCH model. Next, determine the VaR value from
the estimated mean and variance (volatility) using the ARMA-GJR-GARCH model. The results of the model estimator obtained
are based on the return data for the four stocks analyzed, namely the ARMA (5,5)-GJR-GARCH (1,1) model for ICBP stocks and
ARMA (1,2)-GJR-GARCH (1,1) for PGAS shares. The Value-at-Risk values of each stock are 0.060427 and 0.024724. This
research can be used by investors as a consideration in making investment decisions.
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1. Introduction

Investment is an activity of placing funds that are carried out at this time in the hope of obtaining benefits in the
future. In the object of investment, assets are generally divided into two, namely real assets and financial assets. Real
assets are related to infrastructure and financial assets are related to stocks (Dwipa, 2016). Investors choose to invest
in shares in a company based on the desire to gain profits in the future which can be seen from the number of stock
returns. Investing in stocks is faced with risk because stock returns are volatile. Stock returns can change very quickly,
so the stock index value can also change, this movement is known as stock return volatility. High volatility results in
high risk, as well as low volatility results in low risk. Therefore, it needs to be overcome by using a mathematical
model.

Several researchers have used various time series models, one of which is the ARCH model introduced by Engle
in 1982. According to Dwipa (2016) stock returns have three characteristics. The first is the grouping of volatility,
meaning that very large changes occur at certain times and small changes in other periods. The second is fat-tailedness
(excess kurtosis) which means that stock returns display a sharpness that is greater than the normal distribution. Third,
there is a leverage effect, which is a condition where bad news and good news have an asymmetric effect on return
volatility.

The Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model has a more flexible structure to
accommodate the volatility in Bolerslev's (1986) stock. Tamilselvan and Vali (2016) used the GARCH model in
examining Muscat stocks on the security market by concluding that the GARCH (1,1) model is the best estimate for
symmetric data and there is no leverage effect on the data used. However, the GARCH model cannot be used on data
that has a leverage effect. Ali (2013) used the EGARCH, GJR-GARCH, TGARCH, AVGARCH, NGARCH,
IGARCH, and APARCH models to determine the functional relationship of the time series of pathogenic indicators to
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activate reactions on the coast. However, the TGARCH model is marginally better than other models in capturing the
response of the pathogenic variable indicator. Mittnik, Paolella, and Rachev (2002) investigated the stationarity of the
stable GARCH process. However, the process in the GARCH model cannot explain the asymmetric phenomenon,
therefore the Glosten Jagannatan Runkle-Generalized Autoregressive Conditional Heteroscedasticity (GJR-GARCH)
model will be used. The GJR-GARCH model can overcome the asymmetric effect (Lee, 2007).

Measurement of risk in this study using Value at Risk. According to Bakhtiar et al. (2020), Value at Risk is one
of the most popular tools used by investors in measuring risk. Value at Risk is used as a measuring tool that can assess
the worst losses in investing at a certain time and level of confidence. Several studies on the level of risk measurement
use Value at Risk. Sukono et al. (2019) examine the ARIMA-GARCH model which is used to estimate and expect a
shortfall of several stocks in the Indonesian capital market. Based on the analysis, selected stocks are obtained. Bank
Mandiri's shares have the lowest risk level and Mustika Ratu's shares have the highest level of risk with the value-at-
risk of the stock generally smaller than the expected shortfall value. Bucevska (2012) conducted a relative test of the
selected GARCH-type model in terms of the ability to estimate volatility and extended empirical research on VaR
estimation in financial markets. Nilsson (2017) found the best APARCH model for estimating volatility, while for
estimating VaR the best model is APARCH, GJR-GARCH, or EGARCH depending on which VaR level is used.

From the research that has been described, there are still some shortcomings in these models. Among others,
Tamilselvan and Vali (2016) examined Muscat stocks using the GARCH model on symmetric data, but if the data is
asymmetrical the GARCH model cannot be used. One solution for asymmetric data is the GJR-GARCH model.
Sukono et al. (2019) have determined VaR using the time series model but have not used the GJR-GARCH model.

Based on this gap, this study uses the Autoregressive Moving Average-Glosten Jagannatan Runkle-Generalized
Autoregressive Conditional Heteroscedasticity (ARMA-GJR-GARCH) model to determine the Value at Risk value on
stock returns. The purpose of this study is to determine Value at Risk using the ARMA-GJR-GARCH model on stock
return data. The hope of this research is that it can be used by investors to help make investment decisions.

2. Literature Review

2.1. Return
According to Ruppert (2011) return is the rate of return on the results obtained as a result of investing. In general,
the formula for return is as follows:
S(t) >
. =In (1)
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where 73 is stock return at time t, S(t;) is the stock price in period t; and S(t;_,) is the stock price at period t;_;.

2.2. Stasionarity

The stationarity test is the underlying assumption in the statistical procedures used in time series analysis.
According to Tsay (2005), the data stationarity test can use the Augmented Dickey-Fuller (ADF) test. The Augmented
Dickey-Fuller (ADF) test is a stationary test on average, where the statistics for the ADF test are as follows:

A

ADF = )

SE(3)
where SE (5‘) is the standard error for 8. The decision-making criteria are if the ADF < a then reject Hy in other
words, the data is stationary. If the ADF value > « then accept H, in other words, the data is not stationary.

2.3. ARMA Model

The purpose of the ARMA model is to discuss the average model in the time series. In general, the Autoregressive
Moving Average (ARMA) model can be expressed in the following equation:

1 q
rnr=w+ Z oire_i +ar — Z 0;a;_; 3
i=1 j=1

where 1 is the return value at time t, a; is a white noise process or error at time t (Susanti ef al., 2017).

ARMA modeling process. In general, the ARMA modeling process is: (i) Model identification by determining p
and g values with autocorrelation function (ACF) and partial autocorrelation function (PACF) from correlogram plots.
(ii) Parameter estimation can use the method of least squares or maximum likelihood. (iii) Diagnostic test with white
noise and non-correlation test on residuals using Box-Pierce or Ljung-Box. (iv) Forecasting, if the model is suitable it
can be used for recursive predictions.
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2.4. GARCH Model

Bollerslev (1986) developed the ARCH model into a GARCH model (p, q) where q is the order ARCH and p is
the order GARCH. In general, the GARCH model is as follows:
p

p
— 2 _ 2 2
ay = OtV o =w+ Z aag_; + Zﬁjat—j 4)
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where ¢, is the order of independent and identically distributed (iid), o is the residual variance at time—t, w is the
constant component, a; is the I-th parameter of ARCH, a?_; is the square of the residual at a time to (t — i), B; is
the-j parameter of GARCH, o2 j is the variance of the residual at a time to (¢ — j). Equation (3) shows that the
conditional variance is a past shock as seen from the squared residual (p) and the past residual variance (q) (Olowe
and Ayodeji, 2010).

The GARCH modeling process. In general, the volatility modeling process is: (i) Estimated ARMA model with
time series model. (ii) Use the residuals from the ARMA model to test the ARCH effect. (iii) If there is an ARCH
effect, the estimation of the volatility model, and the combined estimates form the ARMA model and the volatility
model. (iv) Perform diagnostic tests to observe the suitability of the model. (v) If the model already fits, use it to
predict based on recursive predictions.

2.5. Asymmetry

According to Bakhtiar er al. (2020) the asymmetric test is a property that shows an imbalance in certain
conditions or objects. In the time series, the asymmetric nature is called the leverage effect or high volatility. To
determine the nature of asymmetry, namely by skewness and kurtosis. Skewness is a degree of imbalance in the
distribution. The asymmetric test can be done by using the cross-correlation between the lag residual (&;) and the
squared residual (g2).

According to Brook (2008) in general, asymmetric testing can be tested by testing the sign bias in the regression
equation as follows:

UF = o + G1Si—1 + P2Si_qup—1 + P38 uq + vy (5)

where S;_ is a dummy indicator with a value of 1 if @i,_; < 0 and 0 for others, v, is an error, S;* ; = 1 — S;_; which
is a positive observation, ¢, is a sign bias parameter (positive or negative effect), ¢, and ¢ is a size bias parameter.

Equation (7) can be used to see the effect of asymmetry on the model by looking at the probability value of the
dummy multiplication with the residual GARCH model. Reject Hy if the probability value of the dummy
multiplication with the GARCH model residual < a then the residual is asymmetric.

2.6. GJR-GARCH Model

Glosten Jagannathan and Runkle (1993) introduced the asymmetric GARCH model, namely the GJR-GARCH
model. The advantage of the GJIR-GARCH model is that it can measure volatility due to the different effects of bad
news and good news. The difference between the GJR-GARCH model and the GARCH model is that the GJR-
GARCH model has parts that represent asymmetric propertles The GJ R-GARCH model is as follows:

Ay = Ot€y,y Ot —w+2alat 1+2B]Ut jtvile- lat i (6)
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where «@; is the parameter to i of ARCH, f; is the parameter to j of GARCH and y; is the parameter to i of the
leverage effect, I;_; is a dummy variable which means a functional index that is zero when a,_; positive and one
when a,_; negative. If the parameter y; > 0 then the negative error does not work, which means that the effect of bad
news will be greater than the effect of good news (Dritsaki, 2017).

GJR-GARCH modeling process: (i) Estimation of GARCH model with time series model. (ii) Use the residuals
from the GARCH model to test the ARCH effect. (iii) Conducting diagnostic tests to observe the suitability of the
model. (iv) Test for asymmetric effects. (v) If there is an asymmetric effect, it can be used to predict based on
recursive prediction.
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2.7. Value-at-Risk

According to Dwipa (2016), VaR is defined as the maximum potential loss in a certain period with a certain level
of confidence in normal (market) conditions. VaR at the confidence level (1 —a) and time interval t can be
formulated as follows:

VaR = inf{r;|F,(r;) = a} (8)

where F; is the distribution function of return r,. Then the VaR for the next period with a confidence level of « can be
formulated as follows:

VaR = u+ o, F () 9)
where u is the mean, o2 is the variance, and o is the standard deviation.

2.8. Backtesting
Back-test is a method used to measure the estimated VaR performance. Suppose 7; represents gain or loss at time
t and VaR; is a prediction of VaR at time t. In 1998 Lopez introduced a model of the size-adjusted frequency
approach as follows:
_ 1 + (Tt - VaRt)Z, T't > VaRt
Ce= {0, r, < VaR, (10)
The statistic used to test the VaR risk performance is by using the quadratic probability score (QPS). The QPS
equation is as follows:

ops = () i(ct - p)? (1)
i=1

where n is the number of data, p is the probability value. The QPS value is between the range [0, 2] where 0 is the
minimum value that occurs when r, < VaR, and 2 is the maximum value that occurs when 1, > VaR,. VaR
performance is said to be good when the small QPS is close to 0 (Sukono et al., 2019)

3. Results and Discussion

3.1. Data Return

The data used is secondary data on the closing prices of ICBP and UNVR shares between 17 December 2018 to
14 December 2021 and obtained from the website https://finance.yahoo.com/. The software used in this research is
Eviews 10 and Ms. Excel. The time series model used in this study is the ARMA-GJR-GARCH model using stock
return data, namely ICBP shares, and PGAS shares. The closing price data is used to calculate the return value using
equation (1). So, by using the Eviews 10 software, the return value for each stock is very volatile and forms a cluster
where there are relatively high clusters and relatively low clusters. Furthermore, testing the stationarity of stock
returns.

3.2. Stationarity Test
Stationary test using Dickey Fuller with a probability value of 5%. The formula used for this stationary test is by
using equation (2). Stationary testing in this study using Eviews 10 software, so the stationarity test results are given
in Table 1.
Table 1. Stock return stationary test

Code ADF value Critical Value  Probability  Stationarity
ICBP -28.91462 _
PGAS -25.62396 -2.8652 0.0000 Stationary

Based on the stationary test in Table 1, the probability value obtained is less than the probability value used,
which is 5%, meaning that the ICBP and PGAS stock return data are stationary.

3.3. ARMA Model and Diagnostic Test

Stock return data that has been stationary will be continued by identifying the ARMA model. The ARMA model
can be identified by looking at the ACF and PACF on the correlogram plot. Based on Table 1, there is no differencing
process for ICBP and PGAS stock data because the two stocks are stationary at the level. The modeling process uses
equation (3), so the model for ICBP stock is ARMA (5,5) and PGAS stock ARMA (1,2). The model is given as
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follows:

ICBP stock: z; = —1.047400z,_, — 1.061424z,_, — 1.046466z,_; — 1.0509772,_,
—0.074621z,_5 — 0.980362a;_s + a;

PGAS stock: z; = —0.944571z,_; — 0.929149a;_, + a;

After obtaining the ARMA model, then the significance test of the above model. Decision-making was seen
from the p-value. If p-value > a then H, accepted and H; rejected, if p-value < a then Hj, rejected and H; accepted.
The results of the t-test were obtained in the above model with a probability value of <0.05, meaning that the lag
obtained in each model has a significant effect on stock return data. After that, a diagnostic test is carried out on the
model to see that the model obtained is suitable for use. The diagnostic test used in these models is that both models
have white noise.

3.4. GARCH Modeling and Diagnostic Test

Before doing volatility modeling first, we have to check the effect of heteroscedasticity using Eviews 10
software. So that the ARMA model has an ARCH effect and can be continued to identify the GARCH model.
GARCH estimation by looking at the ACF and PACF plots and the modeling process is carried out using equation (4).
The results of the GARCH modeling can be seen in Table 2.

Table 2. GARCH Model
Code GARCH Model Model Equation
ICBP GARCH (1,1) of =8.10 x 1075 + 0.220051a?_; + 0.51168002 ; + u,
PGAS GARCH (1,1) 07 =4.28x 107> + 0.091825a% ; + 0.86336902 ; + u,

Based on the results in Table 2, the two models were tested for significance on the model using a diagnostic test.
The results of the diagnostic test on the GARCH (1,1) model for each stock show that the model has white noise. So
the GARCH (1,1) model for the two stocks used can be continued to the next stage, namely the asymmetric effect test.

3.5. Asymmetry Test

This asymmetric test is also known as the cross-correlation test, which means the multiplication between the lag
residuals (u,) with squared residual (u#). The multiplication is carried out to see whether the GARCH model in Table
2 has asymmetric properties or not. To check the cross-correlation using Eviews 10 software and using equation (5).
The results obtained for the four models are that there is no value equal to zero, so the data used has an asymmetric
nature, then the conditions of bad news and good news have an asymmetric effect on volatility.

3.6. GJR-GARCH Model
GJR-GARCH modeling can be done if you already know the asymmetric nature of the GARCH model contained
in Table 2. The parameter estimation of the GJR-GARCH model is carried out using equation (6) with the help of
Eviews 10 software. The GJIR-GARCH (1,1) model is given as follows:
ICBP stock: 6 = 7.12 x 1075 + 0.078465a?_; + 0.189747a?_,1,_; + 0.58134202 ; + &

PGAS stock: 07 = 4.31 x 107> + 0.063100a?_, + 0.063350a?_,1,_, + 0.86448607 ; + &

Based on the above model, the asymmetric value obtained from each of these models is not equal to zero,
which means that there is a shock so that the volatility of the return value for the leverage effect has a significant
effect. The results of the two models have a greater influence on bad news received in return volatility than on good
news.

3.7. Value-at-Risk and Backtesting

Before determining the Value-at-Risk value, the average value and volatility of stock returns for the next period
are predicted. Using the average model and stock return volatility, the value is calculated i, = #, and 62 = 6. These
results can be seen in Table 3.

Table 3. Average, variance, VaR and QPS
Code il 67 o, VaR, QPS
ICBP -0.001327 0.001291 0.035930 0.060427 0.012248
PGAS 0.000811 0.000241 0.015524 0.024724 0.292517




Napitupulu et al. / Operations Research: International Conference Series, Vol. 2, No. 4, pp. 102-108, 2021 107

The Value-at-Risk value is determined based on the results of the ARIMA model for the average and GJR-
GARCH for volatility (variance). Estimates of the average /i and the volatility (variance) o2 are in Table 3. If the
probability value is 5%, then the normal distribution value z, s = —1.65 and the investment assumption is S, = 1
unit, then the Value-at-Risk value is obtained using equation (9) and the results are according to Table 5 in column
VaR,.

Value-at-Risk performance estimates are evaluated using backtesting. If the probability value used is 5%, then
by using equation (10) and equation (11) the QPS results are obtained as in Table 3 QPS column. The QPS values
obtained in Table 5 are in the range of values [0,2] which means that the performance of the Value-at-Risk ARMA-
GJR-GARCH is good for use in the analyzed stock return data.

4. Conclusions

In this study, an estimation of the Value-at-Risk value has been carried out using a time series model. The data
analyzed are ICBP and PGAS stock return data. The models obtained from each stock are ARMA (5,0,5)-GJR-
GARCH (1,1) and ARMA (1,0,2)-GJR-GARCH (1,1) models. The results of the Value-at-Risk of each share are
0.060427 for ICBP and 0.024724 for PGAS. The maximum risk obtained by investors with an initial investment of
IDR. 100,000,000.00 and invest in ICBP shares in the amount of IDR. 6,042,70,00. The risk of investors investing in
PGAS shares is IDR. 2,472,400,000. From these results, it is more advisable to invest in PGAS shares, because the
maximum loss borne by investors is smaller than ICBP shares. Based on QPS which is relatively small and is in the
range of values [0,2], it shows that risk measurement using Value-at-Risk on the analyzed stocks has good
performance. The advantages of this study are that it can estimate the value of volatility with data that has an
asymmetric effect using the time series model and can determine the value of Value-at-Risk with this model. This
research is useful for making decisions in investing, so it can help investors with in-stock selection.
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