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Abstract

Research on calculus has developed a lot, including fractional calculus. Fractional calculus is a branch of mathematics that
transforms the orders of derivatives and integrals into rational or even real values. In finding the value of the derivative and the
fractional integral, a numerical method is needed to find it, because of the difficulty if it is done using an analytical method. In
this paper, we will describe the Riemann-Liouville fractional integral approach using the trapezoidal rule and Simpson's rule. We
also provide an overview of the comparisons and errors that result from the two methods.
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1. Introduction

The growth of orders on integrals and derivatives of integers into real and complex numbers is studied in fractional
calculus, a field of mathematical analysis. Fractional derivatives are employed in a wide range of applications. Among
them are engineering (Loverro, 2004), biology (Ghanbari et al., 2020), biotechnology (Magin, 2004), health (lyiola &
Zaman, 2014), dan other specialties. Because fractional derivatives have such a huge impact, they have gotten a lot of
attention in recent years, which could be because they have a broader reach than traditional integer derivatives
(Robinson, 1981).

When analytical integration is hard to evaluate, numerical integration can be a useful tool for generating precise
integral estimates. The trapezoidal rule and Simpson's rule, as shown in (Yeh, 2002; Ling et al., 2017), are two ways
for estimating the integral value. Numerical integration for fractional integrals can be utilized to solve problems with
fractional derivatives, according to existing research. At (Diethelm et al., 2002; Diethelm et al., 2004; Baskonus &
Bulut, 2015), the Adams-Bashforth-Moulton method for solving the fractional differential equation has been
examined. According to Odibat (2006) discusses the modified trapezoidal rule technique for the fractional integral
technique, as well as Caputo's fractional derivative with error formula. In addition, Pandiangan et al. According to
Pandiangan et al. (2021) employ a modified trapezoidal technique to approximate the Caputo fractional derivative by
replacing @ with —a. Kumar et al. (2019) use quadratic and cubic approaches to solve the integral approach of the
Rieman Liouville fraction and the derivative of the Caputo fraction.

In this paper, we present the Riemann-Liouville fractional integral approximation method with a modified
trapezoidal rule and Simpson's rule based on the previously mentioned research. We also provide examples for several
integral forms and their error ratio analysis.

2. Materials and Methods
2.1. Materials

Using the trapezoidal and Simpson's rules, we shall explain the Riemann-Liouville fractional integral technique in
this paper. We also give an outline of the contrasts and mistakes caused by the two approaches.
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2.2. Methods
2.2.1. Riemann-Liouville Fractional Integral

Combining the derivative and integral of the order of integers yields the Riemann-Liouville integral. First, to
obtain the Cauchy function, we must generalize the definition of the integral. If f(t) can be integrated on any interval
(a, t), then integral

t
70 = [ foe
exist. Then for two integrals: ‘

T1 t

f2(0) = del_f f(Ddt = ff(T)drfdrl

a

- [ - Of @,

If the last equation is integrated, then we get three integrals of f(t)

T1 t

3@ = fdrlf def f(r)dr—fdrlf(t—r)f(r)dr

a
t

= Z,[(t - D?f(t)dr.
a
Then, we can get the Cauchy formulation
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If n in Cauchy's formula in equation (1) is replaced by a real number p, we will get an integral for any order.

Definition 2.1 [14] Riemann-Liouville fractional integral with order « > 0 and t > 0 is defined as
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Then the Riemann-Liouville fractional derivative Wlth order & > 0 defined as
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where n is an integer.

The following are some instances of Riemann-Liouville fractional integral results for o, >0, t > 0, and y >
—1:
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2.2 Trapezoidal Rule in Numerical Integration

Based on [6], the trapezoidal rule is one of the numerical methods used in estimating the integral or area under the
curve. For example, given the definite integral

b
160 = [ Feodx @
a
The trapezoidal rule replaces f(x) with a linear polynomial

(b —x)f(a) + (x —a)f (b)

Py(x) = bh—a

Which interpolates f(x) in a and b so that integral (2) can be approximated by the integral of from P, (x) in [a, b]
which is given by

Ti(f) = (

b_a) [w] 3)

To improve T;(f) in (3), [a,b] can be divided tasks into specific subintervals, with each subinterval using
approach (3) to derive the trapezoid rule formula for n subinterval

1 1
Tu(f) = k| FOx0) + FG) + FG2) + o+ f (o) + 5 £ G| @

where h = (b — a)/n is the length of each subinterval and the vertex of integration
xj =a+ jhforj=0,1,..,n Form (4) can be generally be written as

n-1

h
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2.3 Simpson’s Rule in Numerical Integration

Another method for estimating integral values is to use Simpson’s Rule. In Simpson’s Rule, the T;(f)
approximation in (3) is improved by using quadratic interpolation to approximate f(x) in [a, b]. Assume P,(x) is a
quadratic polynomial that interpolates f(x) on the variables a, ¢ = (a + b)/2, and b. We can approximate I(f), with
this

(x—c)(x—>b) (x—a)(x—b) (x—a)(x—c)

~ (a= f (@) + D) o)+ RO f(b)] dx. (5)
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This integral can be computed directly, but it is more convenient to first introduce h = (b —a)/2 and then
substitute the integral's variables to obtain the evaluation result of (5)

h
S,(f) =3
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To get a more accurate result for the interval [a, b], assume n to an even integer, h = (b — a)/n, and define the
evaluation point for f(x) as

xj =a+jh, j=01,..,n

The interval [a, b] = [x,, x,,] is divided into three subintervals, each with three assessment points, resulting in the
following the formula for Simpson’s rule
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h
Sa(f) = 3 [f (x0) + 4f (x1) + 2f (x3) + 4f (x3) + 2f (xg) + -+ + 2f (xp_2) + 4f (xp_1) @)
+ f(xp)].

3. Results and Discussion
3.1. Modified Trapezoidal Rule

In this section, we will use a generalization of the trapezoidal rule to approximate the fractional integral /% f (x) in
order a.

Theorem 3.1 [12] Assume the interval [0, a] is divided into k subintervals [x]-,xj+1] with the same width h = a/k
with point x; = jh, for every 0,1, ..., k. Modified trapezoidal rule:

h*f(0) N h*f(a)
IMNa+2) T'(a+2)

T(f,h,a) = ((k— 1) - (k —a—1)k%)

k-1 ) (8)
E h .
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is an approximation to the fractional integral

(J%f )@ =T(f, h,@) — Ex(f,h,@), a>0,a>0.

The modified trapezoidal rule is used to approximate various forms of fractional integrals in the following
examples.

Table 1: The result of the fractional integral (]O'Sf(x)) (1) with f(x) = sin x using the modified trapezoid rule

k h T(f, ha) Error Ratio
10 0.1 0.6691782501 5.06 x 10~%
20 0.05 0.6695538553 1.30 x 107* 3.89

40  0.025 0.6696509910 3.32x107° 3091
80  0.0125 0.6696758212 8.44x107% 3.93
160 0.00625 0.6696820649 2.19x107% 3.85

Table 2: The result of the fractional integral (] 0.5f (x)) (1) with f(x) = e* using the modified trapezoid rule

k h T(f, h a) Error Ratio
10 0.1 2.292437779 1.74 x 1073
20 0.05 2.291145923 448 x 1074 3.88
40 0.025 2.290812410 1.14 x 10~* 3.92
80 0.0125 2.290727055 2.88 x 1073 3.96
160  0.00625 2.290705459 7.21 x107° 3.99

3.2 Simpson’s Rule for Fractional Integral

Theorem 3.2 Blaszczyk & Siedlecki, (2014) Assume the interval [0, b] divided into k subintervals [t;, ;1] with a
constant distance h = b/k and nodes t; = ih for any i = 0,1, ..., k. Simpson’s rule for the fractional integral J%f(t)
is as follows:
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In the following, we give some uses of Simpson's rule to approximate the fractional integral for several different

integrals.

Table 3: The result of the fractional integral (] 05f (x)) (1) with f(x) = sin x using Simpson’s rule

k H S(tj, h,a) Error Ratio
10 01 0.6696793673 4.89 x 10°
20 0.05 0.6696838268 4.33 x 10~7 11.29
40 0.025 0.6696842213 3.83x 1078 11.30
80 0.0125 0.6696842562 3.39x10~° 11.29
160 0.00625 0.6696842593 3.00x 1019 11.30

Table 4: The result of the fractional integral (]0-5f(x)) (1) with f(x) = e* using Simpson's rule

k h S(t;, h, @) Error Ratio
10 0.1 2.290717870 1.96 x 107°
20  0.05 2.290700127 1.87 x 107° 10.48
40  0.025 2.290698427 1.74 x 1077 10.74
80  0.0125 2.290698268 1.59 x 1078 10.94
160 0.00625  2.290698254 1.44 x 107° 11.04

3.3 Result Analysis

The multiplication of k is used in the calculation results for Table 1 to Table 4. Because the value of the function
used in the following calculation includes all the values of the function used in the previous calculation, this
multiplication is done to simplify the calculation. The ratio column in Table 1 and Table 2 has a value of roughly 4 for
each k value in the table, indicating that the error will drop by 4 times from the original mistake for every doubling of
k. Meanwhile, Table 3 and Table 4 show that the ratio column is worth roughly 11 for each value of k in the table,
implying that doubling k reduces the error by 11 times. This value is higher than the trapezoid rule's successive error
ratio. Furthermore, the error value of the result with Simpson's rule for each integral value is smaller than the
trapezoidal rule, as shown in Table 1 to Table 4. For each integral form, Simpson's rule is a better approximation than
the trapezoidal method. Furthermore, consider Table 5 and Table 6 below:

Table 5: The result of the fractional integral (jlf(x))(Zn) with f(x) = 1/(2 + cos x) using the modified trapezoidal

rule
k T Error Rasio
2 4.188790 5.61x 1071
4 3.665191 3.76 x 10~? 14.928
8 3.627792 1.93x 107* 194.7772
16 3.627599 * *
32 3.627599 * *
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Table 6: The result of the fractional integral (]O-Sf(x)) (2m) with f(x) = 1/(2 + cos x) using the modified
trapezoidal rule

k T(f, h a) Error Rasio
2 1.679189 2.26 x 1071
4 1.480484 2.74 x 1072 8.2589
8 1.457513 440 x 1073 6.2171
16 1.454273 1.16 x 1073 3.7859
32 1.453415 3.05x 107* 3.8131

The function f(x) = 1/(2 + cos x) in Table 3 and Table 4 is periodic with a period of 2r. Based on Weideman,
(2002) this form of function is an example of geometric convergence. The integral form (2) returns the precise
number of significant digits approximately doubled by doubling the value of k, therefore convergence is fast. For
fractional integrals, however, this is not always the case.

For example, Table 5 explains that the error ratio of the integral (]“(1/(2 + cos x))) (2m) with @ = 1 change

happens more quickly. The result of integral k = 16 and k = 32 was correct up to the limits due to computational
errors. Table 6 indicates that for a = 0.5, the error ratio of the same integral does not vary as quickly as the ratio in
Table 5. This indicates that for « = 1, the modified trapezoidal rule for the fractional integral of the periodic function
converges quickly, but this is not always the case for other alpha values.

4. Conclussion

In this paper, we explain how to approach the Riemann-Liouville fractional integral using the trapezoidal method
and Simpson's rule. In terms of examples, we provide various examples of fractional integrals with different functions
and values of @ and compare the errors and their error ratios. In comparison to the trapezoidal method, Simpson's
method is better at reaching the provided fractional integral value, according to the comparison results. Furthermore,
for @ = 1, the fractional integral of the periodic function converges quickly, but this does not necessarily apply to
other alpha values.
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