Available online at http://iorajournal.org/indx.php/orics

Operations Research: International Conference Series

Vol. 1, No. 1, pp. 33-42, 2020

Estimation of the Value-at-Risk (VaR) Using the TARCH Model
by Considering the Effects of Long Memory in Stock Investments

Nurfadhlina Abdul Halim®*, Agus Supriatna®, Adhy Prasetyo”

#Faculty of Science and Technology, Universiti Sains Islam Malaysia,
Bandar Baru Nilai, 71800, Nilai, Negeri Sembilan, Malaysia
®Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran,
JI. Raya Bandung Sumedang KM.21, Hegarmanah, Kec. Jatinangor, Kabupaten Sumedang, Jawa Barat 45363, Indonesia

*corresponding author: nurfadhlina@usim.edu.my

Abstract

Value at Risk (VaR) is one of the standard methods that can be used in measuring risk in stock investments. VaR is
defined as the maximum possible loss for a particular position or portfolio in the known confidence level of a
specific time horizon. The main topic discussed in this thesis is to estimate VaR using the TARCH (Threshold
Autoregressive Conditional Heteroscedasticity) model in a time series by considering the effect of long memory.
The TARCH model is applied to the daily log return data of a company's stock in Indonesia to estimate the amount
of quantile that will be used in calculating VaR. Based on the analysis, it was found that with a significance level of
95% and assuming an investment of 200,000,000 IDR, the VaR using the TARCH model approach was 5,110,200
IDR per day.
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1. Introduction

In the capital market, almost all investments contain an element of uncertainty or risk. Investors do not
know with certainty the results that will be obtained from the investment they do. Because investors face
risky investment opportunities, a measurement tool is needed to test these market risks, so that investors
can safely know how far they can invest (Batuparan, 2001; Jogiyanto. 2007).

Based on the description above, the purpose of this paper is to calculate the amount of Value at Risk
(VaR) of a stock, which is to calculate the maximum loss at a certain position with the level of
confidence that has been known in a specific horizon time. The approach used is the TARCH time series
model to estimate the size of the quantile that will be used in the calculation of Value at Risk (VaR)
(Sukono et al., 2019).
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2. Formulation of the Problem

Suppose there is a closing stock data, then the log return value will be sought as follows

- Iog(PiJ &)

where Py is the share price in period t and P;_, is the stock price in period t - 1.

Based on the log return data will be tested whether the data is stationary and if it is stationary then the
data will be processed to get the mean equation model and the variance equation model. The mean
equation model will follow the time series model, while the variance equation model will follow the
TARCH (Threshold Autoregressive Heteroscedasticity) model. After getting the mean equation model
and the variance equation model, the quantile size will be calculated with a known level of confidence,
for example by 95% (Ruppert, 2004).

The problem that will be discussed in this paper is how to calculate the value of VaR by modeling the
mean and variance equations that produce quantile values to be calculated together with a number of
investments given.

3. Literature Review
3.1. Stock Returns

Return is the income that will be received if we invest money in a financial asset (stocks, bonds) or
real assets (property, land). Return calculation is done as in equation (1).

3.2. Time Series Model
There are several types of time series models that can be used in modeling the mean and variance for

VaR calculations as follows.
Autoregressive (AR). For r, log return series, the AR(p) model is

h=¢ihy +@hli, +A +P, 1, +3;. )
Moving Average (MA). For r, log return series, the MA(q) model is
h=a —6a, -60a ,-A-0a_,. 3)
Autoregressive Moving Average (ARMA). For r; log return series, the ARMA(p,q) model is
=@y +hhi +A +P, 1, +3a -6 —6,a , —A —6a_,. 4)

Autoregressive Integrated Moving Average (ARIMA). In general, the equation for the ARIMA(p,1,q)
model is

W, =W,y + oW, , +A + oW, , +a —0a_ —6a , -A -6,a_,. )
Autoregressive Conditional Heteroscedasticity (ARCH). Specifically, the ARCH(p) model is
assumed as
a =0, ol =a, +aa’ +A +apat2_p, (6)
where {&:} is a series of independent and identically distributed (iid) random variables with mean 0 and
variance 1, oo >0, ;> 0, for i > 0 (Beronilla et al., 2007; Cryer, 1986; Mood et al., 1963).

Threshold Autoregressive Conditional Heteroscedasticity (TARCH). For r; return log series, the
TARCH(p,q) model for p >0 and q > 0 are integers, defined as (Ruppert, 2004; Klienbaum et al., 1988):

2 2 2 2
rh=u+a, a =0é&;, oy =ay+aqag + fioc +A gl g, (7
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where { & } is the sequence of iid random variables with mean 0 and variance 1.
3.3. Quantiles

Quantile can be interpreted as a value that divides a set of data into several equal parts (Ruppert,
2004).

If the cumulative distribution function of X is continuous and does not go down, then the function of X
has an inverse function F. For each g between 0 and 1, F'(q) is called g-quantile or the 100th
percentile. The probability of a continuous X cumulative distribution function under g-quantile is exactly

Quntile that will be used in VaR calculation can be calculated as follows
quantile=f, —n\/o? (10)

where 7 is the value of the confidence coefficient chosen in normal distribution, f, is the result of
forecasting the mean model, and /o is the volatility value resulting from forecasting variance

modeling (Dowd, 2002; Herrhyanto, 2003).
3.4. Value at Risk (VaR)

Value at Risk which is usually abbreviated as VaR is generally defined as the maximum possible loss
for a particular position or portfolio in the known confidence level of a specific time horizon (Redhead,
1997).

VaR calculations using the TARCH model can be calculated as follows

VaR =amountof investmentx quantile (11)

4. Data Analysis
4.1. Data

The data used in this paper is taken from http://finance.yahoo.com/g/hp?s=MPPA.JK for Matahari
Putra Prima Tbk daily shares. Observation data is the closing stock price for the last 1080 days (13
November 2000 to 31 December 2004) which lasts for five days a week except holidays. The
characteristics of the analyzed data are log return (Continuously Compounded Return) of stock trading
which is calculated from the closing price of the Matahari Putra Prima Tbk (MPPA) stock trading. The
graph of the company data can be seen in Figure 1.
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Figure 1: Plot of closing stock price of Matahari Putra Prima Thk



36 Nurfadhlina Abdul Halim et al./ Operations Research: International Conference Series Vol 1, No 2, pp. 33-42, 2020
4.2. Stock Return Calculation

Using equation (1) a daily log return will be calculated from Matahari Putra Prima Tbk's closing stock
price data in 1080 days.

For example, the price of Matahari Putra Prima Tbk shares on November 13, 2000, and November 14,
2000, is 600 IDR and 575 IDR, then in a time horizon of 1 day (24) hours, the 1st daily log return
obtained is

vy = Iog[g—gij =-0.018483

And so on to calculate the 2nd daily log return to the 1079th daily log return at the company Matahari
Putra Prima Tbk. The log return chart of the Matahari Putra Prima Tbk stock can be seen in Figure 2.
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Figure 2: Plot log return data for closing stock prices of Matahari Putra Prima Thk
4.3. TARCH Model

In modeling variance with the TARCH model, we must do the mean modeling, where the mean
modeling and variance modeling is carried out simultaneously between the two. Analysis of the TARCH
model is assisted with Eviews 4.1 software.

4.3.1. Modeling Equation Mean

Figure 2 shows that Matahari Putra Prima Tbk's log return data has been stationary in the mean, but
this data will be performed differencing to see the long-term effect on the data. Long memory testing will
be carried out using the Geweke and Porter-Hudak method. The calculation to find the value of d is by
using software R, so that obtained d = -0.182. To identify an appropriate model can be seen from the
ACF and PACF plots can be seen in Figure 3 and 4.
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Figure 3: Plot ACF data log return Matahari Putra Prima Thk
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Figure 4: Plot PACF data log return Matahari Putra Prima Thk

37

From the ACF and PACEF plots, there are indications to model the equation of the Matahari Putra Prima
Tbk log return mean data with the AR(2) or MA(2) models. Among the possibilities of the two models,
the best model is AR(2), with the estimated parameters in Table 1.

Table 1: Estimated parameters of the AR(2) model

Dependent Variable: MATAHARI
Method: Least Squares
Date: 04/08/08 Time: 21:21

Sample(adjusted): 15/11/2000 30/12/2004
Included observations: 1077 after adjusting endpoints
Convergence achieved after 3 iterations

Variable Coefficient  Std. Error  t-Statistic Prob.

AR(1) -0.155132  0.030315 -5.117296  0.0000

AR(2) -0.109808  0.030315 -3.622188  0.0003

R-squared 0.031361 Mean dependent var 1.86E-09

Adjusted R-squared 0.030460 S.D. dependent var 0.015125

S.E. of regression 0.014893  Akaike info criterion -5.574048

Sum squared resid 0.238424  Schwarz criterion -5.564796

Log likelihood 3003.625 Durbin-Watson stat 1.996717
Inverted AR Roots -.08+.32i -.08-.32i

From Table 1, it can be seen that the parameter AR(2) has been significantly different from zero, this can
be seen from the probability value that is smaller than the tolerance level of a = 5% so that the model

equation is obtained as follows

r, =—0.155132;, , —0.10980,_,a, .
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After estimating the parameters, a standardized residual correlogram will be seen in Table 2 to see
whether or not there is a serial residual correlation effect for modeling the mean AR(1) log return data.

Table 2: Residual model corelogram AR(2)

Date: 04/10/08 Time: 07:54

Sample: 15/11/2000 30/12/2004

Included observations: 1077

Q-statistic probabilities adjusted for 2 ARMA term(s)

Autocorrelation Partial Correlation AC PAC Q-Stat Prob

1 0.002 0.002 0.0029

2 -0.001 -0.001 0.0041

3 0.008 0.008 0.0821 0.774
4 -0.037 -0.037 1.5307 0.465
5 -0.029 -0.028 2.4128 0.491
6 -0.040 -0.040 4.1079 0.392
7 -0.037 -0.037 5.6234 0.345
8 0.027 0.027 6.4436 0.375
9 0.020 0.019 6.8988 0.439

10 -0.008 -0.011 6.9653 0.540
11 0.016 0.011 7.2382 0.612
12 0.028 0.026 8.0781 0.621
13 -0.007 -0.007 8.1341 0.701
14 0.037 0.038 9.6240 0.649
15 -0.057 -0.054 13.172 0.435
16 -0.036 -0.034 14.618 0.405
17 -0.019 -0.020 15.024 0.450
18 -0.004 0.002 15.043 0.522
19 -0.031 -0.032 16.103 0.517
20 0.048 0.044 18.601 0.417

- = === = - -

From Table 2, it appears that there is no serial correlation in the data, this is shown by the Q-Stat
probability that is greater than the tolerance level a« = 5% and there is no significant ACF and PACF plot
until lag-20. Therefore, the AR(2) model is suitable for modeling the mean return data log of Matahari
Putra Prima Tbk.

4.3.2. Variance Modeling Stage
To find out whether after modeling the mean ARCH effect is still present, an ARCH LM (Lagrange

Multiplier) test will be performed which is listed in Table 3.
Table 3: ARCH LM AR(2) model tests

ARCH Test:
F-statistic 9.184268| Probability | 0.002499
Obs*R-squared 9.123353| Probability | 0.002524

Table 3 shows that there is an ARCH element in Matahari Putra Prima Tbk's log return data, this can be
seen from the value of the statistical F probability that is smaller than the tolerance level o = 5%.

Once it is known that the log return data contains ARCH elements, the data can be identified by
looking at the ACF and PACF plots of squared residuals a, =r, —f;, which are found in Table 4.

Table 4: Correlogram residual squared AR(2) model

=: Oa.
1.

000

0

08300A0N440000000
ANOLOOOWSAMDANONS

BONONUNA 008058008 00N
00000000000000000000
00000000000000900
240003003000000S
000040 A0B000000NON
10000000000000000

Od!m-uoid NOO

00000000000000
gOOOCOCOOOO

000000000




Nurfadhlina Abdul Halim et al./ Operations Research: International Conference Series Vol 1, No 2, pp. 33-42, 2020 39

From Table 4, it appears that the ACF and PACF plots are significant in lag 1, so there are indications for
modeling the variance equation using the TARCH(1,1) model. In modeling the variance with the
TARCH(1,1) model and with the mean AR(2) model, the following equation is obtained

h=dlhy +dl, +a,
of =ay+mal, + fol + @l .
The estimation results of the AR (2) -TARCH (1.1) model are in Table 5.

Table 5: Estimated parameters of the AR(2)-TARCH (1,1) model

Dependent Variable: MATAHARI
Method: ML - ARCH (Marquardt)
Date: 12/30/08 Time: 09:26
Sample(adjusted): 3 1079
Included observations: 1077 after adjusting endpoints
Convergence achieved after 18 iterations
Variance backcast: ON
Coefficient  Std. Error  z-Statistic Prob.
AR(1) -0.155108  0.038218 -4.058512  0.0000
AR(2) -0.125010  0.034677 -3.605019  0.0003
Variance Equation
C 7.35E-05 1.02E-05 7.200332  0.0000
ARCH(1) 0.152192  0.032905 4.625142  0.0000
(RESID<0)*ARCH(1) 0.042013 0.037520 1.119734  0.2628
GARCH(1) 0.509494  0.057469 8.865474  0.0000
R-squared 0.031130 Mean dependent var -1.49E-11
Adjusted R-squared 0.026607 S.D. dependent var 0.015125
S.E. of regression 0.014922  Akaike info criterion -5.612909
Sum squared resid 0.238483  Schwarz criterion -5.585155
Log likelihood 3028.552  Durhin-Watson stat 1.996370
Inverted AR Roots -.08+.34i -.08 -.34i

From Table 5, it can be seen that the AR(2)-TARCH(1,1) parameter has been significantly different from
zero, this can be seen from the probability value that is smaller than the tolerance level o = 5%. So the
AR(2)-TARCH(1,1) model can be written as

r, =—0.155108, , - 0.12501Q,_, +a,,

o =(7.35%10°)+ 0.1521922, +0.042013, , +0.50949457, .

After estimating the parameters, it will be seen whether the AR(2)-TARCH(1,1) model still has the
ARCH effect.

Table 6: LM ARCH Test MA(2)-TARCH(L,1) model

ARCH Test:
F-statistic 0.217414 Probability 0.641112
Obs*R-squared 0.217775 Probability 0.640741

From Table 6, it can be seen that there is no ARCH element in the log return data, this can be seen from
the statistical F probability value greater than the tolerance level a = 5%.
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To see whether there are still serial correlations in the model, look at the ACF and PACF squared
residual plots standardized in Table 7.

Table 7: Standardized Residual Squared Correlogram

Date: 04/09/08 Time: 20:42

Sample: 15/11/2000 30/12/2004

Included observations: 1077

Q-statistic probabilities adjusted for 2 ARMA term(s)

Autocorrelation Partial Correlation AC PAC Q-Stat Prob

a 0.092 0.092 9.1548
0.043 0.035 11.150
0.039 0.032 12.755 0.000

0.018 0.010 13.088 0.001

0.040 0.035 14.803 0.002
0.000 -0.009 14.803 0.005
0.058 0.056 18.402 0.002
-0.004 -0.016 18.417 0.005
-0.026 -0.029 19.142 0.008
10 -0.008 -0.008 19.214 0.014
11 -0.036 -0.033 20.631 0.014
12 -0.019 -0.014 21.007 0.021
13 -0.004 0.004 21.028 0.033
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From Table 7, it can be seen that in the ACF and PACF plots, all bar graphs do not cross the dotted line
(Bartlett line). Besides that the statistical probability value of Q is greater than the level of significance a
= 5%. This shows that there is no serial correlation in the model.

Next will be seen whether the residual model has a nominal distribution. By using the Tools P Input
Analyzer in ARENA 7 software, the results are shown in Figure 5.

Distribution Summary
Distribution - Normal
Expression : NORM(4.83e-009, 0.0149)
Square Error :0.052016
Figure 5: Residual normal distribution histogram AR(2)-TARCH(1,1) model

Figure 5 shows that the AR(2)-TARCH(1,1) residuals follow a bell curve, which means that the data is
normally distributed.
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5. Calculating Value at Risk (VaR)

After obtaining the results of the mean modeling stage and the variance modeling stage, the VaR
amount will be calculated in the Matahari Putra Prima Tbk log return data. For example, if it is assumed
to allocate funds of 200,000,000 IDR for investment in Matahari Putra Prima Tbk, the amount of VaR in
Matahari Putra Prima Tbk shares will be calculated as follows.

Suppose that & is the normal distribution. AR(2)-TARCH(1,1) model is

f, =—0.155108, ; —0.125010Q,_,,

(7 35x10° )+ 0.1521927, +0.042013,_, + 0.50949452,
Will be calculated r1079 and ‘71079 ie.
fioze =—0.155108 4,4 — 0. 12501(}1077 =-0.155108-0.018483 —0.12501(q0.018483 =0.000511
and Pt vasiance values can be generated directl fw are. So the 1079th variance
value is ‘71£079 =0.000251, so the%/olatlllty value g 0 0. (ﬁsséﬁ
To calculate the quantile magnitude, look for the known oo and 01079 The quantile size will be
calculated with a = 5% (95% confidence coefficient), i.e.
quantile(0.05) = f, ;o — 1.6456;4,4) = 0.000511-1.645(0.015843 = —0.025551
where the negative sign is written as the left tail of the conditional normal distribution.
Using equation (10), obtained VVaR for Matahari Putra Prima Tbk shares, i.e.
VaR = 200,000,000 IDR x 0.025551 = 5,110,200 IDR.

So it can be concluded that with a 95% confidence level, there will be a loss of 5,110,200.00 IDR per
day.

6. Conclussion

From the discussions that have been carried out, the following conclusions are obtained.

1) A fairly good time series model in modeling the Matahari Putra Prima Tbk log return data after
differencing in the last 1080 days (13 November 2000 to 31 December 2004) is the AR(2)
model.

2) The variance model that is good enough to model the Matahari Putra Prima Tbk log return data
in the last 1080 days (13 November 2000 to 31 December 2004) is the TARCH(1.1) model.

3) After estimating the modeling of mean and variance equations, the results show that the
appropriate model for the Matahari Putra Prima Tbk log return data is the AR(2)-TARCH(1,1)
model. Using a 95% confidence level and assuming an investment of 200,000,000.00 IDR, then
the value of the VaR Matahari Putra Prima Tbk is 5,110,200 IDR. So the loss obtained for
Matahari Putra Prima Thk shares is 5,110,200.00 IDR per day.
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