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Abstract 

Value at Risk (VaR) is one of the standard methods that can be used in measuring risk in stock investments. VaR is 

defined as the maximum possible loss for a particular position or portfolio in the known confidence level of a 

specific time horizon. The main topic discussed in this thesis is to estimate VaR using the TARCH (Threshold 

Autoregressive Conditional Heteroscedasticity) model in a time series by considering the effect of long memory. 

The TARCH model is applied to the daily log return data of a company's stock in Indonesia to estimate the amount 

of quantile that will be used in calculating VaR. Based on the analysis, it was found that with a significance level of 

95% and assuming an investment of 200,000,000 IDR, the VaR using the TARCH model approach was 5,110,200 

IDR per day. 
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1. Introduction 

In the capital market, almost all investments contain an element of uncertainty or risk. Investors do not 
know with certainty the results that will be obtained from the investment they do. Because investors face 
risky investment opportunities, a measurement tool is needed to test these market risks, so that investors 
can safely know how far they can invest (Batuparan, 2001; Jogiyanto. 2007). 

Based on the description above, the purpose of this paper is to calculate the amount of Value at Risk 
(VaR) of a stock, which is to calculate the maximum loss at a certain position with the level of 
confidence that has been known in a specific horizon time. The approach used is the TARCH time series 
model to estimate the size of the quantile that will be used in the calculation of Value at Risk (VaR) 
(Sukono et al., 2019). 
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2. Formulation of the Problem 

Suppose there is a closing stock data, then the log return value will be sought as follows 
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where Pt is the share price in period t and Pt - 1 is the stock price in period t - 1. 
Based on the log return data will be tested whether the data is stationary and if it is stationary then the 

data will be processed to get the mean equation model and the variance equation model. The mean 
equation model will follow the time series model, while the variance equation model will follow the 
TARCH (Threshold Autoregressive Heteroscedasticity) model. After getting the mean equation model 
and the variance equation model, the quantile size will be calculated with a known level of confidence, 
for example by 95% (Ruppert, 2004). 

The problem that will be discussed in this paper is how to calculate the value of VaR by modeling the 
mean and variance equations that produce quantile values to be calculated together with a number of 
investments given. 

3. Literature Review 

3.1. Stock Returns 

Return is the income that will be received if we invest money in a financial asset (stocks, bonds) or 
real assets (property, land). Return calculation is done as in equation (1). 

3.2. Time Series Model 

There are several types of time series models that can be used in modeling the mean and variance for 
VaR calculations as follows. 

Autoregressive (AR). For rt log return series, the AR(p) model is 

.2211 tptpttt arrrr                                                             (2) 

Moving Average (MA). For rt log return series, the MA(q) model is 

.2211 qtqtttt aaaar                                                            (3) 

Autoregressive Moving Average (ARMA). For rt log return series, the ARMA(p,q) model is 

.22112211 qtqtttptpttt aaaarrrr                                     (4) 

Autoregressive Integrated Moving Average (ARIMA). In general, the equation for the ARIMA(p,1,q) 
model is 

.22112211 qtqtttptpttt aaaaWWWW                                  (5) 

Autoregressive Conditional Heteroscedasticity (ARCH). Specifically, the ARCH(p) model is 
assumed as 
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where {εt} is a series of independent and identically distributed (iid) random variables with mean 0 and 

variance 1, α0 > 0, αi ≥ 0, for i > 0 (Beronilla et al., 2007; Cryer, 1986; Mood et al., 1963). 
Threshold Autoregressive Conditional Heteroscedasticity (TARCH). For rt return log series, the 

TARCH(p,q) model for p > 0 and q > 0 are integers, defined as (Ruppert, 2004; Klienbaum et al., 1988): 
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where { εt } is the sequence of iid random variables with mean 0 and variance 1. 

3.3. Quantiles 

Quantile can be interpreted as a value that divides a set of data into several equal parts (Ruppert, 
2004). 

If the cumulative distribution function of X is continuous and does not go down, then the function of X 
has an inverse function F-1

. For each q between 0 and 1, F-1
(q) is called q-quantile or the 100th 

percentile. The probability of a continuous X cumulative distribution function under q-quantile is exactly 
q. 

Quntile that will be used in VaR calculation can be calculated as follows 

2ˆ
ttrquantile                                                                    (10) 

where η is the value of the confidence coefficient chosen in normal distribution, tr̂  is the result of 
forecasting the mean model, and 2

t  is the volatility value resulting from forecasting variance 
modeling (Dowd, 2002; Herrhyanto, 2003). 

3.4. Value at Risk (VaR) 

Value at Risk which is usually abbreviated as VaR is generally defined as the maximum possible loss 
for a particular position or portfolio in the known confidence level of a specific time horizon (Redhead, 
1997). 

VaR calculations using the TARCH model can be calculated as follows 

.investment ofamount quantileVaR                                                      (11) 

4. Data Analysis 

4.1. Data 

The data used in this paper is taken from http://finance.yahoo.com/q/hp?s=MPPA.JK for Matahari 
Putra Prima Tbk daily shares. Observation data is the closing stock price for the last 1080 days (13 
November 2000 to 31 December 2004) which lasts for five days a week except holidays. The 
characteristics of the analyzed data are log return (Continuously Compounded Return) of stock trading 
which is calculated from the closing price of the Matahari Putra Prima Tbk (MPPA) stock trading. The 
graph of the company data can be seen in Figure 1. 
 

 
Figure 1: Plot of closing stock price of Matahari Putra Prima Tbk 
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4.2. Stock Return Calculation 

Using equation (1) a daily log return will be calculated from Matahari Putra Prima Tbk's closing stock 
price data in 1080 days. 

For example, the price of Matahari Putra Prima Tbk shares on November 13, 2000, and November 14, 
2000, is 600 IDR and 575 IDR, then in a time horizon of 1 day (24) hours, the 1st daily log return 
obtained is 

.018483.0
600

575
log1 








Mr  

And so on to calculate the 2nd daily log return to the 1079th daily log return at the company Matahari 
Putra Prima Tbk. The log return chart of the Matahari Putra Prima Tbk stock can be seen in Figure 2. 
 

 
Figure 2: Plot log return data for closing stock prices of Matahari Putra Prima Tbk 

4.3. TARCH Model 

In modeling variance with the TARCH model, we must do the mean modeling, where the mean 
modeling and variance modeling is carried out simultaneously between the two. Analysis of the TARCH 
model is assisted with Eviews 4.1 software. 

4.3.1. Modeling Equation Mean 

Figure 2 shows that Matahari Putra Prima Tbk's log return data has been stationary in the mean, but 
this data will be performed differencing to see the long-term effect on the data. Long memory testing will 
be carried out using the Geweke and Porter-Hudak method. The calculation to find the value of d is by 
using software R, so that obtained d = -0.182. To identify an appropriate model can be seen from the 
ACF and PACF plots can be seen in Figure 3 and 4. 
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Figure 3: Plot ACF data log return Matahari Putra Prima Tbk 
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Figure 4: Plot PACF data log return Matahari Putra Prima Tbk 

 
From the ACF and PACF plots, there are indications to model the equation of the Matahari Putra Prima 
Tbk log return mean data with the AR(2) or MA(2) models. Among the possibilities of the two models, 
the best model is AR(2), with the estimated parameters in Table 1. 

Table 1: Estimated parameters of the AR(2) model 

Dependent Variable: MATAHARI 
Method: Least Squares 
Date: 04/08/08   Time: 21:21 
Sample(adjusted): 15/11/2000 30/12/2004 
Included observations: 1077 after adjusting endpoints 
Convergence achieved after 3 iterations 

Variable Coefficient Std. Error t-Statistic Prob.   

AR(1) -0.155132 0.030315 -5.117296 0.0000 
AR(2) -0.109808 0.030315 -3.622188 0.0003 

R-squared 0.031361     Mean dependent var 1.86E-09 
Adjusted R-squared 0.030460     S.D. dependent var 0.015125 
S.E. of regression 0.014893     Akaike info criterion -5.574048 
Sum squared resid 0.238424     Schwarz criterion -5.564796 
Log likelihood 3003.625     Durbin-Watson stat 1.996717 

Inverted AR Roots   -.08+.32i   -.08 -.32i 

 
From Table 1, it can be seen that the parameter AR(2) has been significantly different from zero, this can 
be seen from the probability value that is smaller than the tolerance level of α = 5% so that the model 
equation is obtained as follows 

.10980.0155132.0 21 tttt arrr    
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After estimating the parameters, a standardized residual correlogram will be seen in Table 2 to see 
whether or not there is a serial residual correlation effect for modeling the mean AR(1) log return data. 

 
Table 2: Residual model corelogram AR(2) 

 
 

From Table 2, it appears that there is no serial correlation in the data, this is shown by the Q-Stat 
probability that is greater than the tolerance level α = 5% and there is no significant ACF and PACF plot 
until lag-20. Therefore, the AR(2) model is suitable for modeling the mean return data log of Matahari 
Putra Prima Tbk. 

4.3.2. Variance Modeling Stage 

To find out whether after modeling the mean ARCH effect is still present, an ARCH LM (Lagrange 
Multiplier) test will be performed which is listed in Table 3. 

Table 3: ARCH LM AR(2) model tests 

ARCH Test: 

F-statistic 9.184268  Probability 0.002499 

Obs*R-squared 9.123353  Probability 0.002524 

 
Table 3 shows that there is an ARCH element in Matahari Putra Prima Tbk's log return data, this can be 
seen from the value of the statistical F probability that is smaller than the tolerance level α = 5%. 

Once it is known that the log return data contains ARCH elements, the data can be identified by 
looking at the ACF and PACF plots of squared residuals ttt rra ˆ , which are found in Table 4. 
 

Table 4: Correlogram residual squared AR(2) model 
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From Table 4, it appears that the ACF and PACF plots are significant in lag 1, so there are indications for 
modeling the variance equation using the TARCH(1,1) model. In modeling the variance with the 
TARCH(1,1) model and with the mean AR(2) model, the following equation is obtained 
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The estimation results of the AR (2) -TARCH (1.1) model are in Table 5. 
 

Table 5: Estimated parameters of the AR(2)-TARCH (1,1) model 

Dependent Variable: MATAHARI 
Method: ML - ARCH (Marquardt) 
Date: 12/30/08   Time: 09:26 
Sample(adjusted): 3 1079 
Included observations: 1077 after adjusting endpoints 
Convergence achieved after 18 iterations 
Variance backcast: ON 

 Coefficient Std. Error z-Statistic Prob.   

AR(1) -0.155108 0.038218 -4.058512 0.0000 
AR(2) -0.125010 0.034677 -3.605019 0.0003 

        Variance Equation 

C 7.35E-05 1.02E-05 7.200332 0.0000 
ARCH(1) 0.152192 0.032905 4.625142 0.0000 

(RESID<0)*ARCH(1) 0.042013 0.037520 1.119734 0.2628 
GARCH(1) 0.509494 0.057469 8.865474 0.0000 

R-squared 0.031130     Mean dependent var -1.49E-11 
Adjusted R-squared 0.026607     S.D. dependent var 0.015125 
S.E. of regression 0.014922     Akaike info criterion -5.612909 
Sum squared resid 0.238483     Schwarz criterion -5.585155 
Log likelihood 3028.552     Durbin-Watson stat 1.996370 

Inverted AR Roots   -.08+.34i   -.08 -.34i 

 
From Table 5, it can be seen that the AR(2)-TARCH(1,1) parameter has been significantly different from 
zero, this can be seen from the probability value that is smaller than the tolerance level α = 5%. So the 
AR(2)-TARCH(1,1) model can be written as 

  .509494.0042013.0152192.01035.7

,125010.0155108.0

2
11

2
1

52

21










tttt

tttt

Ia

arrr


 

After estimating the parameters, it will be seen whether the AR(2)-TARCH(1,1) model still has the 
ARCH effect. 

 
Table 6: LM ARCH Test MA(2)-TARCH(1,1) model 

ARCH Test: 

F-statistic 0.217414   Probability 0.641112 
Obs*R-squared 0.217775   Probability 0.640741 

 
From Table 6, it can be seen that there is no ARCH element in the log return data, this can be seen from 
the statistical F probability value greater than the tolerance level α = 5%. 
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To see whether there are still serial correlations in the model, look at the ACF and PACF squared 
residual plots standardized in Table 7. 

 
Table 7: Standardized Residual Squared Correlogram 

 
 

From Table 7, it can be seen that in the ACF and PACF plots, all bar graphs do not cross the dotted line 
(Bartlett line). Besides that the statistical probability value of Q is greater than the level of significance α 
= 5%. This shows that there is no serial correlation in the model. 

Next will be seen whether the residual model has a nominal distribution. By using the Tools ►Input 
Analyzer in ARENA 7 software, the results are shown in Figure 5. 

 

 
Distribution Summary 

Distribution : Normal        

Expression : NORM(4.83e-009, 0.0149) 

Square Error : 0.052016 

Figure 5: Residual normal distribution histogram AR(2)-TARCH(1,1) model 
 
Figure 5 shows that the AR(2)-TARCH(1,1) residuals follow a bell curve, which means that the data is 
normally distributed. 
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5. Calculating Value at Risk (VaR) 

After obtaining the results of the mean modeling stage and the variance modeling stage, the VaR 
amount will be calculated in the Matahari Putra Prima Tbk log return data. For example, if it is assumed 
to allocate funds of 200,000,000 IDR for investment in Matahari Putra Prima Tbk, the amount of VaR in 
Matahari Putra Prima Tbk shares will be calculated as follows. 

Suppose that εt is the normal distribution. AR(2)-TARCH(1,1) model is 

  .509494.0042013.0152192.01035.7ˆ
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Will be calculated 1079r̂  and 
2
1079̂ , i.e. 

,000511.0)018483.0(125010.0)018483.0(155108.0125010.0155108.0ˆ
107710781079  rrr  

and 
2
t  variance values can be generated directly from Eviews 4.1 software. So the 1079th variance 

value is 
2
1079̂  = 0.000251, so the volatility value is .015843.0000251.0   

To calculate the quantile magnitude, look for the known 1079r̂  and 
2
1079̂ . The quantile size will be 

calculated with α = 5% (95% confidence coefficient), i.e. 

  025551.0)015843.0(645.1000511.0ˆ645.1ˆ)05.0( 10791079  rquantile  

where the negative sign is written as the left tail of the conditional normal distribution. 
Using equation (10), obtained VaR for Matahari Putra Prima Tbk shares, i.e. 

VaR = 200,000,000 IDR × 0.025551 = 5,110,200 IDR. 
So it can be concluded that with a 95% confidence level, there will be a loss of 5,110,200.00 IDR per 

day. 

6. Conclussion 

From the discussions that have been carried out, the following conclusions are obtained. 
1) A fairly good time series model in modeling the Matahari Putra Prima Tbk log return data after 

differencing in the last 1080 days (13 November 2000 to 31 December 2004) is the AR(2) 
model. 

2) The variance model that is good enough to model the Matahari Putra Prima Tbk log return data 
in the last 1080 days (13 November 2000 to 31 December 2004) is the TARCH(1.1) model. 

3) After estimating the modeling of mean and variance equations, the results show that the 
appropriate model for the Matahari Putra Prima Tbk log return data is the AR(2)-TARCH(1,1) 
model. Using a 95% confidence level and assuming an investment of 200,000,000.00 IDR, then 
the value of the VaR Matahari Putra Prima Tbk is 5,110,200 IDR. So the loss obtained for 
Matahari Putra Prima Tbk shares is 5,110,200.00 IDR per day. 
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