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Abstract

The concept of aggregate loss models pertains to a stochastic variable representing the total sum of all losses encountered within a
set of insurance policies. In the non-life insurance sector, it is employed to assess the potential losses that an insurance company
may face when claims made by policyholders exceed the allocated claim reserves. The purpose of studying aggregate loss models
is to ascertain risk measures such as standard deviation of premium principles, value at risk (VaR), and conditional tail
expectation (CTE). These steps aid insurance companies in the management and quantification of risks associated with aggregate
losses. The standard deviation of premium principles is calculated analytically by substituting expected values and variances,
while VaR is estimated using the Monte Carlo method to determine quantile values and confidence intervals. CTE is evaluated by
computing the average losses that surpass the VaR threshold. These distributions and parameters require the Pareto distribution,
which characterizes claim sizes, and the Poisson or Negative Binomial distribution, which factors in the number of claims. It is
crucial to carefully consider the selection of the appropriate distribution, as it plays a significant role in determining the accuracy
and reliability of the model. Furthermore, other influencing factors, such as loading factors and confidence intervals, should also
be taken into account. These factors have the potential to significantly impact the quantification of risk arising from the model.

Keywords: Aggregate loss model, standard deviation premium principles, Value at Risk (VaR), Conditional Tail Expectation
(CTE), Monte Carlo Method.

1. Introduction

Insurance companies face significant potential losses if claims filed by policyholders exceed the claim reserves
estimated by the insurance company. This potential is interpreted as a risk that must be managed by the insurance
company to avoid losses. Risk can be assumed as a random variable with claims having a distribution, so risk
calculations are usually related to probability models, one of which is the aggregate loss model. The aggregate loss
model is a random variable that represents the total of all losses that occur in an insurance policy block. The aggregate
loss model can be modeled using a collective risk approach, where the number of claims is a discrete random variable,
and the size of the claims is a continuous random variable. The number of claims used in this research is a random
variable with Poisson and Negative Binomial distributions, while the size of the claims is modeled with random
variables having Gamma, Pareto, and Exponential distributions. The aggregate loss model can be measured
analytically using the standard risk measure, the standard deviation premium principle. Furthermore, numerical
methods such as Monte Carlo simulations are employed to determine the Value at Risk and Conditional Tail
Expectation risk measures.

Insurance companies operate in an environment filled with uncertainty, especially when facing the risk of claims
that can significantly impact their operational sustainability. This risk becomes increasingly complex when companies
must manage claims from policyholders that may exceed the budgeted reserve estimates. Therefore, risk management
is key to maintaining financial stability and the continuity of insurance companies.

Risk in the insurance context can be considered a random variable, with claims as critical elements forming the risk
distribution. A deep understanding of the nature of this risk distribution enables insurance companies to take proactive
steps in planning and managing their risks. One approach used to measure claims risk is through aggregate loss
models. The aggregate loss model is a mathematical representation of the total losses that may occur in a specific
period or within an insurance policy portfolio. In this study, focus is given to two types of random variables: the
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number of claims represented by the Poisson and Negative Binomial distributions, and the size of claims represented
by the Gamma, Pareto, and Exponential distributions.

To measure risk analytically, standard risk measures such as standard deviation and the premium principle are used.
Additionally, a numerical approach is applied through Monte Carlo methods to calculate the Value at Risk (VaR) and
Conditional Tail Expectation (CTE) risk measures. The combination of analytical analysis and numerical approaches
provides a more comprehensive understanding of the potential losses that insurance companies may face. Thus, this
research aims not only to investigate the inherent risks in insurance claims but also to provide a solid foundation for
insurance companies to develop effective risk management strategies. With a deep understanding of claims risk,
insurance companies can be better prepared to face emerging challenges and ensure the sustainability of their
operations in a dynamic and uncertain market.

Aggregate loss models are commonly used in the insurance and financial industries to manage risks. Poisson-
Tweedie distribution family for modeling loss frequency, which provides more flexibility and reduces the chance of
model misspecification. The proposed model is applied to the Transportation Security Administration (TSA) claims
data to demonstrate the modeling capacity of the Poisson-Tweedie distribution. Chen, Wang, & Kelly (2021) studied
this and the result highlight the effectiveness and applicability of the Poisson-Tweedie distribution in modeling loss
frequency and its potential for improving risk management and decision-making in the insurance industry

Risk measure of Value-at-Risk (VaR) has shown its performance and benefit in many applications, it is in fact not
a coherent risk measure. Josaphat & Syuhada (2021) introduces a new risk measure called Dependent CoVaR
(DCoVaR) that provides better forecast than existing measures like Modified CoVaR (MCoVaR) and Copula CoVaR
(CCoVaR) for a target loss dependent on another random loss. Empirical studies on financial returns data show that
DCoVaR, when used with Gumbel Copula, accurately describes the dependence structure of returns and outperforms
other measures in comprehending the connection between bivariate losses and optimizing investment positions.

Septiany, Setiawaty, & Purnaba (2020) on their study focuses on using the Monte Carlo method to model the
aggregate loss distribution in the context of health insurance claims. The researchers selected the Z12M-NBGE
distribution for claim frequency and the lognormal distribution for claim severity based on goodness of fit tests. These
distributions were then used to form the aggregate loss distribution using the Monte Carlo method. The simulation
results were obtained for the measurement of Value at Risk (VaR) and Shortfall Expectations (ES). The Monte Carlo
method was found to be simple to implement and capable of handling various risks with dependency.

2. Literature Review
2.1 Aggregate Loss Model

The model for aggregate loss, depicting the distribution of the total loss within a specific timeframe, serves as a
foundation for operational choices, determination of insurance premiums, enhancement of reinsurance strategies, and
the effective management of solvency and liquidity risks. Regulatory bodies, tasked with ensuring the financial
stability of insurance firms, mandate that these entities maintain sufficient capital to safeguard against unforeseen or
severe losses. Risk metrics based on percentiles, like value at risk (VaR) or expected shortfall (ES), originate from
aggregate loss models and enable the computation of scenarios representing the most unfavorable situations (Chen,
Wang, & Kelly, 2021).

According to Li, et.al. [4] the aggrate loss models is based on the interaction between risks described through their
correlation coefficients. Let X;, X, ..., X, be random variables representing n risks that are not independent, so there
exist p(Xq, X2), ..., p(Xpn—1, X). Then, the formed aggregate risk is

S=X,+X, +-+ Xy (1)

2.2 Monte Carlo Method

The Monte Carlo method is a numerical approach to solving loss model problems that cannot be solved
analytically. This method involves randomly sampling observations according to the required distribution. In finding
aggregate losses, this method uses a simple algorithm with a loading factor proportional to the standard deviation. The
greater the standard deviation of the loss distribution, the higher the risk, so this method is important for measuring
risk appropriately. Thus, the Monte Carlo method is an effective tool in calculating aggregate losses and measuring
the risks associated with them.

The Monte Carlo method generates simulated values for a probabilistic variable by employing a random number
generator with a uniform distribution in the [0,1] interval. Additionally, it utilizes the cumulative distribution
function linked to these stochastic variables. It's crucial to understand that the use of simulation techniques does not
imply a decision optimization process. Instead, solving problems through simulation involves the utilization of
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interactive algorithms and following well-defined steps to reach objectives. The input data usually consists of random
variables generated by a random number generator (Platon & Constantinescu, 2014).

2.3 Standard Deviation Premium Principles

Standard deviation premium principles are a type of premium principle used in optimal reinsurance models. In the
study by Yichun (2011) the insurer seeks to minimize the value at risk (VaR) or the conditional value at risk (CVaR)
of their total risk exposure. Then, adapt the equation of the standard deviation premium principle is defined as:

SD(X) = E(X) + g/Var (X) (2)
2.4 Value at Risk (VaR)

Value at Risk (VaR) is one of widely-used risk measure and defined as a maximum loss that can be tolerated at
level of confidence (Rohmawati & Syuhada, 2015). Their study said, risk measure prediction with VaR will be
accurate, when the coverage probability equal to a given level of confidence a.

Carlo (2022) discussed that inancial losses arise from statistical analyses and the models and parameters employed
in their computation. As a result, there are multiple approaches to calculate Value at Risk (VaR), with three prominent
methods outlined:

a) Monte Carlo Simulation Method: This involves estimating VaR by generating numerous potential outcomes
derived from the initial input data.

b) Historical Simulation Method: VaR is calculated by utilizing historical price data for each financial asset.

¢) Analytical/Parametric Method - Delta-Gamma: This method estimates VaR using projected profitability data.

Definition 1 (Klugman, et.al., 2004)

If the random loss variable is denoted by X, then the value at risk of X at the 10066% level, denoted by VaRg or
s, is the 1006 percentile (or quantile) of the distribution X that satisfies

Vars =P(X>mg) =1—-6

2.5 Conditional Tail Expectation (CTE)

Conditional Tail Expectation (CTE) is a measure used to calculate premiums and quantify the global risk of an
insurer. It takes into account both underestimation and overestimation losses by using asymmetric loss functions. The
premium is calculated as the quantity that minimizes an objective function related to the conditional tail expectation
of the loss. This approach ensures that the premium is a coherent risk measure and helps practitioners assess the risk
associated with the total claims amount. The methodology of using CTE is applied to model the risks of composite
models and is compared with other risk measures such as Value-at-Risk (VaR) and Tail Value-at-Risk (TVaR)
(Enrique, et.al., 2023).

Definition 2 (Klugman, et.al., 2004)

If X is denoted as the random loss variable, the conditional tail expectation of X at the 1006% confidence level,

denoted CTEs[X], is an estimate of losses exceeding the 1006 percentile (or quantile) of the distribution X.
CTEs[X] = E[X|X > Vars]

3. Materials and Methods
3.1. Materials

The data used in this study is simulation data generated with the help of the Python application. The data size for
the simulation calculations is 100,000, then the distributions and parameters used in the calculations for various
combinations of Poisson and Negative Binomial (NB) distributions with an average large claim amount budgeted by
the insurance company of 50,000,000 for each distribution. Subsequently, common loading factors used by insurance
companies, 1 and 2, as well as confidence levels of 95% and 99%, were applied.

3.2. Method

Analytical and numerical methods are used to measure risk, including the use of the standard deviation premium
principle and the Monte Carlo method to determine risk measures such as Value at Risk and Conditional Tail
Expectation.

The steps taken in this research are as follows:
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a) Describes the properties of aggregate loss models, including the Probability Distribution Function (PDF),
Cumulative Distribution Function (CDF), expectations, and variance.

b) Replacing the expectation and variance formulas of the aggregate loss model obtained in step (1) to calculate
the risk measure with the principle standard deviation method analytically, by combining random variables
such as the number of distributed claim Poisson (1) and Binomoal negatif (r,p) and the distributed
Gamma (a, B), Peto (t,w), Exponential (A).

c) Modifying the Monte Carlo method algorithm to calculate the Value at Risk and Conditional Tail Expectation
risk measures from the aggregate loss model, with random variables in the form of the number of distributed
Poisson (u) and Binomoal negatif (r, p) and the distributed Gamma (a, B), Peto (t,w), Exponential (A).

d) Simulating the calculation of risk measures Standard Deviation Premium Principle, Value at Risk, and
Conditional Tail Expectation for aggregate loss models with known parameters for each.

e) Explain the interpretation of the calculation simulation results in step (4).

f) Summarize the findings found.

4. Results and Discussion
4.1 Characteristics of Aggregate Loss Models

Aggregate loss represents the total losses that occur within a block of insurance policies. These losses consist of
the number of claims, which will be modeled as a discrete random variable N, and the size of the claims, modeled as a
continuous random variable, X. The assumption is made that the magnitudes of losses are identically and
independently distributed (i.i.d) between each other. The aggregate loss model can be expressed as follows:

S=X,+X,+ -+ Xy
its cumulative distribution function is defined as:

« _ ©
Fs() = ) fu()Fi ()
n=0

where fy(n) is the PDF of the random variable N, and F5'(x) is the convolution function for the total claim size
X;+ X, + -+ Xy, expressed as:

X

*1 *(i—1 .

Py&%if&“>@—m4nﬁgmquq»=zamm
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then, its expectation and variance are as follows:

E[S] = E[NE[X]] (4)
Var[S] = E[N][Var(X)] + [E(X)]*Var[N] (5)
4.2 Standard Deviation Premium Principle for Aggregate Loss Models
This risk measure utilizes the expectation and variance of the aggregate loss model by substituting Equations (4)

and (5) into Equation (2), allowing for an analytical solution depending on the parameters of its distribution as
follows:

SD(S) = E[N]E[X] + g E[N][Var(X)] + [E(X)]?Var[N] (6)
Table 1: Risk measurement of the standard deviation premium principle for several distribution combinations.
Model N X SD(S)
1 X~Gam(a,B) Bua + g/ pa(l + a))
2. X~Par(z, w) )
N~Pois(u) W (T — )
P R ol e
3. X~Exp(d) Au + g\/z_ﬂ)
4, X~Gam(a,B)

N~BN(r,p) g(ra + gJra(p(1 — a) + a))
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5. X~Par(t,w) w
p-D\’
r(p(t—1)+1
’ gj @2 )
0. X~Exp(4) &(T + g\/;)
p

4.3 Simulation Calculation of Aggregate Loss Model

The simulation involves determining the standard deviation premium principle, estimating VaR using a modified
Monte Carlo algorithm for quantile value and confidence interval estimation, and predicting CTE. The simulation
uses a data size of 100,000, and the distributions and parameters for various distribution combinations are detailed in
Table 4.2. The average claim amount budgeted by the insurance company is 50,000,000 for each distribution.
Additionally, loading factors of 1 and 2, along with confidence levels of 95% and 99%, are applied.

Table 2:
Model N X g 8
95%
1. X~Gam(a, f) 1&2 99%
; 95%
N~P ~
2. ois(u) X~Par(t, ) 1&2 99%
95%
3. X~Exp(d) 1&2 99%
95%
4, X~Gam(a, f) 1&2 99%
5 X~Par(t,w) 1&2 95%
' N~BN(r,p) ’ 99%
95%
6. X~Exp(1) 1&2 99%

4.4 Results of Simulation Calculation for Standard Deviation Premium Principle

The standard deviation premium principle risk measure is calculated by substituting each parameter from the
specified distribution in Table 1 using the formula obtained in Table 1. Consequently, the standard deviation premium
principle values for each aggregate loss model are obtained as follows.

Table 3: Results of Calculation Simulation for Standard Deviation Premium Principle

Model g SD(S)

1 1 12.260754100745366
2 17.31859613098863

9 1 14.80118129091347
2 20.88940267714721

3 1 7.110528807362238
2 9.99599279027379

4 1 24.213891514483464
2 34.396180837912105

5 1 27.921248560613154
2 39.301701405512624

6 1 9.913321086513186
2 13.999219387496998
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The standard deviation value of the loss distribution is a metric that measures how far loss values are spread from
their mean. A higher standard deviation indicates a higher level of variability in the loss distribution and greater risk
or uncertainty in loss projections. Conversely, a lower standard deviation indicates a higher level of consistency or
predictability in the loss distribution and lower risk or more stable loss projections.

The value of 12.260754100745366 indicates the extent of variation or variability in the aggregate losses generated
by the simulation. The higher the SD value, the greater the expected fluctuation in losses. If SD is small, there is a
tendency to approach the mean value, depicting high predictability in the results. On the other hand, a large SD is
likely to experience significant gaps.

4.5 Simulation Results for Value at Risk (VaR)

The VaR risk measure is calculated by first generating random numbers from the distribution combinations in
Table 3 using the Monte Carlo Method to obtain sample values for the aggregate loss model. Then, based on the VaR
determination algorithm, the quantile value is estimated using the smoothed empirical estimate. After obtaining the
estimated quantile value, the confidence interval for the actual quantile is also estimated, resulting in the VaR
calculation for each aggregate loss model as follows.

Table 4: Results of Calculation Simulation for Value at Risk (VaR)

Model o) y s S < ms < 5p
1 95% 95% 34.84772129268849 29.81889567 < ms < 35.37861684
99% 99% 53.38010078304078 51.4459752 < m5 < 62.95636524]
5 95% 95% 41.98941736721508 39.35935221 < 5 < 50.401842883120544
99% 99% 88.5777810245933 87.7373182858008 < s < 97.95955832210473
3 95% 95% 19.500433399896 1197723257 < w5 < 24.53332945548397
99% 99% 43.27026862122348 41.3294231920019 < s < 48.69032041961238
4 95% 95% 68.651329659987 65.74143231401906 < 5 < 82.94606537225745
99% 99% 145.7069534748949 116.95452946 < 5 < 160.36572674860875
95% 95% 79.25470603740997  79.38077383306853 < w5 < 94.57440170340368
5 166.09805193212324 124.07568940017002 < 14
99% 99%
< 184.27972841436363
27.480290956126968 25.378977659117357 < 1
[0) 0
6 95% 95% < 34.09919074505118
99% 99% 60.21395990013581 58.2938278720175 < ms < 67.65240917040532

This implies that with a confidence level of 95%, aggregate losses will not exceed 34.84. In other words, there is a
5% chance that losses will exceed this value. This interval provides an estimate of the range where the actual VaR
may lie. With a confidence level of 95%, VaR is estimated to be between 29.82 and 35.38. This means that this
interval encompasses values that may be generated by the simulation with a 95% confidence level. The smaller the
VaR interval, the higher the confidence in the given VaR estimate.

4.6 Simulation Results for Conditional Tail Expectation (CTE)

The CTE risk measure is calculated by extending the calculation from VaR, with each aggregate loss sample for
the distribution combinations in Table (4.1) obtained in the previous calculations. The average value of losses
exceeding the estimated quantile value is estimated using Equation (7), resulting in the CTE value estimates as
follows.

Table 5: Results of Calculation Simulation for Conditional Tail Expectation (CTE)
Model 5 s
95% 44.95115064382386

1 99% 65.94605807611651
5 95% 54.07474341198557
99% 79.25098364164518
3 95% 26.511452937704913
99% 38.29929885882577
4 95% 88.33106426513393

99% 130.09351943323776
5 95% 100.7900714517955
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99% 149.84450741350932
95% 36.879796202120566
99% 53.16748534429482

CTE provides information about the magnitude of anticipated losses in the extreme part of the distribution, beyond
the VaR value. The value of 44.95115064382386 indicates the average expectation of losses under certain confidence
levels in extreme conditions. This means that the larger the CTE, the higher the expectation of losses.

5. Conclussion

Determining risk measures for the standard deviation premium principle, value at risk (VaR), and conditional tail
expectation (CTE) in this study can be summarized as follows.

a) Analytically establishing the risk measure for the standard deviation premium principle can be accomplished as
follows.

SD[S] = E[N]E[X] + g E[N][Var(X)] + [E(X)]?Var[N]

b) The algorithm for computing VaR for the combined distribution of the aggregate loss model with the number of
claims, namely Poisson(u) and NB(r,p), and the size of claims distributed as Gamma(a, ), Pareto(t, w),
Exponential (1) is as follows.

(@) Defining k as the measure of data to be generated.

(b) Generating the number of claims distributed Poisson(u) and NB(r, p).

(c) Generating the size of claims distributed Gamma(a, B), Pareto(z, w), Exponential (1).
(d) Calculating S = X7*, X;,,t0 obtain sy, 55, ..., Sk.

(e) Sorting sq, S5, ..., s, from smallest to largest.

(f) Calculating the estimated quantile value ft5 = (1 — h)s; + hsjy4.

. . . . . _ -1 ﬂ —
(g) To estimate its confidence interval, first calculate ¢ = @ . k\ké(1 - 8).

(h) Rounding c to the nearest integer.
(i) Determining the confidence interval [s, < mgs < s,] with a = kd —cand b = k6 + ¢ based on the data
obtained in step (5).

¢) For the CTE risk measure, continue the calculation from VaR, where sample loss data has been obtained using
the Monte Carlo method from each combination distribution of the aggregate loss model with the number of
claims, namely Poisson(u) and NB(r,p) and the size of claims distributed as Gamma(a, 8), Pareto(t, w),
Exponential (1). Then, the CTE value can be estimated with Q5 as follows,

K
Oy = —— I
ST ks(1—06) Li
j=ké+1
where §; represents the ordered sample that exceeds k4. If the data size is large or tends to infinity, the estimated

value of Q5 will converge to the true value.

d) The method used in this study only employs a simple method, namely Monte Carlo, as the data used are
simulation data. It is hoped that in future research, other methods such as the Fast Fourier Transform method or
the Panjer Recursion method using the CDF determined in this study can be used. The expectation is to use real
data to understand how the actual risk measure values are based on insurance company claim data.
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