Comparing the Performance of Prediction Model of Ridge and Elastic Net in Correlated Dataset
Abstract
Multicollinearity refers to a condition where high correlation between independent variables in linear regression model occurs. In this case, using ordinary least squares (OLS) leads to unstable model. Some penalized regression approaches such as ridge and elastic-net regression can be applied to overcome the problem. Penalized regression estimates model by adding a constrain on the size of parameter regression. In this study, simulation dataset is generated, comprised of 100 observation and 95 independent variables with high correlation. This empirical study shows that elastic-net method outperforms the ridge regression and OLS. In correlated dataset, the OLS is failed to produce a prediction model based on mean squared error (MSE)Published
How to Cite
Issue
Section
Authors who publish with this journal agree to the following terms:
With the receipt of the article by Editorial Board of the Operations Research: International Conference Series (ORICS) and it was decided to be published, then the copyright regarding the article will be diverted to ORICS
Operations Research: International Conference Series (ORICS) hold the copyright regarding all the published articles and has the right to multiply and distribute the article under Creative Commons Atribusi 4.0 Internasional.Â
Copyright tranfer statement the author to the journal is done through filling out the copyright transfer form by author. The form can be downloaded HERE.Â







