Life Insurance Aggregate Claims Distribution Model Estimation

https://doi.org/10.47194/orics.v4i4.271

Authors

  • Setyo Yohandoko The Faculty of Mathematics and Natural Sciences Jenderal Soedirman University, Purwokerto, Indonesia
  • Agung Prabowo The Faculty of Mathematics and Natural Sciences Jenderal Soedirman University, Purwokerto, Indonesia
  • Usman Abbas Yakubu Department of Mathematics, Yusuf Maitama Sule University, Kano, Nigeria
  • Chun Wang JCU Singapore Business School, James Cook University Singapore, 149 Sims Drive, 387380, Singapore

Abstract

Risk is a hazard or consequence that can occur in an ongoing process or future events. As the party responsible for assuming and managing risks, the insurance company must be prepared to provide compensation in the event of claims; otherwise, they may face bankruptcy. Hence, it is important to understand the characteristics of risks handled by the insurance company. The risk's characteristics can be analyzed through the distribution model of previous-period claims. The sum of aggregate claims over several periods forms the aggregate claims distribution. The aggregate claims distribution used to determine the amount of pure premium and gross premium that must be obtained by the insurance company. In this research, the determination of distribution model estimation was examined for data cases on aggregate claims of life insurance in Indonesia 2016-2020. The result of this research conduct that the appropriate distribution model is the inverse Gaussian 3P distribution (three parameters).

References

Andriyani, A. (2017). Penentuan Premi Asuransi Kendaraan Menggunakan Pendekatan Distribusi Peluang. Prosiding Konferensi Nasional Penelitian Matematika dan Pembelajarannya II (KNPMP II). Surakarta 18 Maret 2017. Universitas Muhammadiyah Surakarta. 37-49.

Bain, L. J., dan Engelhardt, M. (1992). Introduction to Probability and Mathematical Statistics Second Edition. California: Duxbury.

Bowers Jr., N. L., Gerber, H. U., Hickman, J. C., Jones, D. A., dan Nesbitt, C. J. (1997). Actuarial Mathematics (2nd ed.). Illinois: The Society of Actuaries.

Casella, G., dan Berger, R. L. (2002). Statistical Inference (Second Edition). California: Duxbury.

Chrisan, K. W., Altien, J. R., dan Manurung, T. (2019). Model Distribusi Data Klaim Asuransi Mobil untuk Menentukan Premi Murni. Jurnal d’CartesiaN, 8(2), 108-113. https://doi.org/10.35799/dc.8.2.2019.24378

Cleménte, G. P., dan Savelli, N. (2010). A Collective Risk Model for Claims Reserve Distribution. Atti del XVI Convegno di Teoria del Rischio, (pp. 59-87). Retrieved Mei 12, 2022, from https://www.researchgate.net/publication/261397269_A_Collective_Risk_Model_for_Claims_Reserve_Distribution

Dickson, D. C. M. (2005). Insurance Risk and Ruin. Cambridge: Cambridge University Press.

Folks, J. L. dan Chhikara, R. S. (1978). The Inverse Gaussian Distribution and its Statistical Application-A Review. J. R. Statist. Soc. B, 40(3), 263-289.

Forbes, C., Evans, M., Hastings, N., dan Peacock, B. (2011). Statistical Distributions. New Jersey: John Wiley dan Sons.

Hanafi, M. M. (2016). Manajemen Resiko (edisi ke-3). Yogyakarta: UPP STIM YKPN.

Hasan, N. I. (2014). Pengantar Asuransi Syariah. Jakarta: Gaung Persada Press Grup.

Hogg, R. V. dan Klugman, S. A. (1984). Loss Distributions. New Jersey: John Wiley dan Sons.

Kellison, S. G., dan London, R. L. (2011). Risk Models and Their Estimation. Winsted: ACTEX Publications, Inc.

Kementerian Pendidikan dan Kebudayaan Republik Indonesia. Kamus Besar Bahasa Indonesia. [Online]. Retrieved Mei 25, 2022, from KBBI Daring: https://kbbi.kemendikbud.go.id/entri/risiko.

McCullagh, P., dan Nelder, J. A. (1989). Generalized Linear Models. 2nd Edition. London: Chapman and Hall.

Mood, A. M., Graybill, F. A., dan Boes, D. C. (1974). Introduction to the Theory of Statistics, 3rd. New York: McGraw-Hill.

Otoritas Jasa Keuangan. (2021). Statistik Perasuransian Indonesia tahun 2020. Jakarta: OJK.

Prabowo, A., Mamat, M., Sukono, dan Taufiq, A. A. (2019). Pricing of Premium for Automobile Insurance using Bayesian Method. International Jurnal of Recent Technology and Engineering (IJRTE),8(3), 6226-6229. https://doi.org/10.35940/ijrte.C5740.098319

Press, W. H., Flannery, B. P., Teukolsky, S. A., dan Vetterling, W. T. (1992). Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge: Cambridge University Press.

Riaman., Supena, Y., Lesmana, E., Sukono, F., dan Firdaus, R. (2013). Analisis Model Risiko kolektif pada Asuransi Jiwa Kredit Menggunakan Model Klaim Agregasi. Prosiding Seminar Nasional Sains dan Teknologi Nuklir PTNBR – BATAN Bandung 04 Juli 2013, pp 634-643. ISSN 1858-3601. Retrieved 25 Mei, 2022, from https://adoc.pub/analisis-model-risiko-kolektif-pada-asuransi-jiwa-kredit-men.html

Rothman, A. (2021). GLM Part I: Rigorous Mathematical Formulation. Retrieved June 21, 2022, from Toward Data Science: https://towardsdatascience.com/generalized-linear-models-a-rigorous-mathematical-formulation-58ac2ec7d9ea

Sumiyati. (2019). Layanan Lembaga Perbankan Dan Keuangan Mikro. Jakarta: Kompas Gramedia.

Vaughan, E. J. dan Vaughan, T. (1987). Fundamental of Risk and Insurance (10th ed.). New Jersey: John Wiley dan Sons.

Walpole, R. E., Myers, R. H., Myers, S. L. dan Ye, K. (2011). Probability dan Statistics for Engineers dan Scientists Ninth Edition. New Jersey: Prentice Hall.

Published

2023-12-30

How to Cite

Yohandoko, S., Prabowo, A., Yakubu, U. A., & Wang, C. (2023). Life Insurance Aggregate Claims Distribution Model Estimation. Operations Research: International Conference Series, 4(4), 117–125. https://doi.org/10.47194/orics.v4i4.271