Comparison of K-Medoids and Clara Algorithm in Poverty Clustering Analysis in Indonesia

https://doi.org/10.47194/orics.v4i4.279

Authors

  • Ananda Rizki Dwi Ardini Faculty of Mathematics and Natural Sciences, Riau University, Bina Widya Campus, Pekanbaru 28293
  • Haposan Sirait Faculty of Mathematics and Natural Sciences, Riau University, Bina Widya Campus, Pekanbaru 28293

Abstract

The Covid-19 pandemic entered Indonesia in March 2020, so the government imposed restrictions on people's movement in various regencies. The imposition of restrictions on people's movement will have an impact on the economy to the point of poverty. Poverty is influenced by several factors such as population, health, education, employment and economic factors. The poverty of a district/city in Indonesia is grouped to assist the government in alleviating poverty more efficiently. The process of grouping data in data mining is to group districts/cities in Indonesia based on factors that affect poverty with the K-Medoids and CLARA algorithms, then compare the two methods based on the average value of the ratio of the standard deviations. The variables used in this study consist of 4 variables, namely human development index (HDI), gross regional domestic product (GRDP), unemployment rate, and population density. The results of this study indicate that using the K-Medoids obtained 2 clusters, while using the CLARA algorithm obtained 3 clusters. Based on the results of grouping the two algorithms, the best algorithm was obtained using cluster validation, namely the CLARA algorithm because it has the average value of the ratio of the smallest standard deviation of 0.106. 

References

Alfiah, F., Almadayani, A., Al Farizi, D., & Widodo, E. (2021). Analisis clustering k-medoids berdasarkan indikator kemiskinan di Jawa Timur tahun 2020. Jurnal Ilmiah Sains, 22(1), 1–7.

Arora, P., Deepali, & Varshney, S. (2016). Analysis of k-means and k-medoids algorithm for big data. Procedia Computer Science, 78, 507–512.

Badan Pusat Statistik. (2021). Statistik Profil Kemiskinan di Indonesia. In Badan Pusat Statistik: Jakarta (Ed.), Profil Kemiskinan di Indonesia September 2020.

Bunkers, M. J., & Miller Jr, J. R. (1994). Definition of climate regions in northern plains using an objective cluster modification technique. Journal of Climate, 9(1), 130–146.

Chinchmalatpure, M., & Dhore, M. P. (2020). Quality healthcare prediction using k-means and CLARA partition based clustering algorithm for big data analytics. International Journal of Engineering and Advanced Technology (IJEAT), 9(3), 1140–1144.

Fikri, R., Mushardiyanto, A., Banin, M. N. L., Maureen, K., & Patria, H. (2021). Pengelompokan kabupaten/kota di Indonesia berdasarkan informasi kemiskinan tahun 2020 menggunakan metode k-means clustering analysis. Seminar Nasional Teknik Dan Manajemen Industri Dan Call for Paper (SENTEKMI 2021), 1(1), 190–199.

Johnson, R. A., & Wichern, D. W. (2007). Applied multivariate statistical analysis (6th ed). New Jersey: Pearson education, Inc.

Leonita, L., & Sari, R. K. (2019). Pengaruh PDRB, pengangguran, dan pembangunan manusia terhadap kemiskinan di Indonesia. Jurnal Ekonomi, Manajemen, Dan Akuntansi, 3(2), 1–8.

Marsita, D., Utami, T. W., & Al Haris, M. (2021). Clustering daerah rawan gempa di Sumatra Barat menggunakan metode Clustering Large Application dan metode Density-Based Spatial Clustering of Application With Noise. Universitas Muhammadiyah Semarang.

Putri, R. W., Junaidi, J., & Mustika, C. (2019). Pengaruh pertumbuhan ekonomi, indeks pembangunan manusia, dan tingkat pengangguran terbuka terhadap tingkat kemiskinan di Provinsi Jambi. E-Jurnal Ekonomi Sumberdaya Dan Lingkungan, 8(2), 96–107.

Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20(1), 53–65.

Safitri, P. N., Aristawidya, R., & Faradilla, S. B. (2021). Klasterisasi faktor-faktor kemiskinan di Provinsi Jawa Barat menggunakan k-medoids clustering. Journal of Mathematics Education and Science, 4(2), 75–80.

Shmueli, G., Bruce, P. C., Yanhav, I., Petel, N. R., & Lichtendahl Jr, K. C. (2018). Data mining for bussiness analytics. United States: John Wiley & Sons.

Tufféry, S. (2011). Data mining and statistics for decision making (1st ed.). United Kingdom: John Wiley & Sons.

Weiss, N. A. (2011). Elementary statistics (8th ed., Vol. 4, Issue 1). Boston: Pearson.

Published

2023-12-30

How to Cite

Ardini, A. R. D., & Sirait, H. (2023). Comparison of K-Medoids and Clara Algorithm in Poverty Clustering Analysis in Indonesia. Operations Research: International Conference Series, 4(4), 141–148. https://doi.org/10.47194/orics.v4i4.279