Analysis of Risk Factors for Dengue Hemorrhagic Fever in Riau Province using Negative Binomial Regression

https://doi.org/10.47194/orics.v4i4.280

Authors

  • Aisyah Azhari Rangkuti Statistics Study Program, Faculty of Mathematics and Natural Sciences, Riau University, Riau, Indonesia
  • Haposan Sirait Statistics Study Program, Faculty of Mathematics and Natural Sciences, Riau University, Riau, Indonesia

Abstract

Dengue Hemorrhagic Fever (DHF) is a serious threat in Riau province, Indonesia. To better understand and control the spread of dengue fever, this research aims to analyze the factors that cause dengue fever. This study aims to identify significant risk factors that influence the spread of dengue fever in Riau Province. The Negative Binomial Regression Method was used to identify factors associated with the increase in dengue fever cases in Riau. The variables evaluated include population density of the Aedes aegypti vector , level of environmental cleanliness, prevention practices, and socio-economic factors. In addition, the best model was selected to overcome overdispersion in the data. The results of the analysis show that factors such as population density of the Aedes aegypti vector , environmental cleanliness, and the level of public understanding about dengue prevention practices have a significant influence on the spread of dengue fever in Riau. The best model used to overcome overdispersion in the 2021 dengue fever case data in Riau is Negative Binomial Regression. This research provides a deeper understanding of the factors causing dengue fever in Riau and selects an appropriate statistical model for analyzing data that experiences overdispersion. Negative Binomial Regression proved to be more appropriate in overcoming the problem of overdispersion in the data. These results can be used as a basis for designing more effective dengue prevention and control strategies and provide guidance for more targeted interventions in fighting dengue fever in this region.

References

Alan Agresti (2009). An introduction to categorical data analysis (2nd edn)., John Wiley & Sons, Inc., Hoboken, New Jersey. https://doi.org/10.1002/sim.3564.

Amaliana, L., Sa’adah, U., and Wardhani, N. W. S. (2018). Performa Proporsi Zero-Inflation Pada Regresi Zero-Inflated Negative Binomial (Studi Kasus: Data Tetanus Neonatorum Di Jawa Timur). E-Jurnal Matematika, 7, 41. https://doi.org/10.24843/mtk.2018.v07.i01.p183.

Aulele, S. N. (2012). Pemodelan Jumlah Kematian Bayi Di Provinsi Maluku Tahun 2010 Dengan Menggunakan Regresi Poisson. BAREKENG: Jurnal Ilmu Matematika dan Terapan, 6, 23–27. https://doi.org/10.30598/barekengvol6iss2pp23-27.

Cameron, A. & Trivedi, P., (1990). Regression-Based Test For Overdispersion In The Poisson Model. Journal of Econometrics, 46(1), pp. 347-346.

Dhiya, A. Y. (2020). Pemodelan Penderita Stroke dan Diabetes Melitus di Kota Padang dengan Model Regresi Logistik Biner Bivariat. IX, 270–277.

Fitrial, N. H., and Fatikhurrizqi, A. (2021), Pemodelan Angka Kesakitan Covid-19 Di Indonesia Dengan Pendekatan Regresi Poisson Dan Regresi Binomial Negatif. Seminar Nasional Official Statistics, 2020, 65–72. https://doi.org/10.34123/semnasoffstat.v2020i1.465.

Guerdan, R. (2010). Gejala dan Tanda Demam Berdarah Dengue. Jurnal Ilmu Kedokteran Dengue, 5(2), 56-62.

Hu, Shuhua. 2007. Akaike Information Criterion. North Carolina State University.

Keswari, N. M. R., Sumarjaya, I. W., and Suciptawaty, N. L. P. (2014). Perbandingan Regresi Binomial Negatif dan Regresi Generalisasi Poisson dalam Mengatasi Overdispersi (Studi Kasus: Jumlah Tenaga Kerja Usaha Pencetak Genteng di Br. Dukuh, Desa Pejaten), E-Jurnal Matematika, 3, 107. https://doi.org/10.24843/mtk.2014.v03.i03.p072.

Mahfudhotin, M. (2020). Regresi Generalized Poisson Untuk Memodelkan Jumlah Penderita Gizi Buruk Pada Balita di Surabaya, Jambura Journal of Probability and Statistics, 1, 47–56. https://doi.org/10.34312/jjps.v1i1.6876.

Mahfudhotin, U. (2020). Regresi Generalized Poisson untuk Mengatasi Overdispersi. Jurnal Biometrika, 12(2), 165-178.

Masyeni, S., Haque, U., & Syafruddin, D. (2021). The Relationship Between Climate Factors and Dengue Hemorrhagic Fever Incidence in Jakarta, Indonesia. Global Health Action, 14(1), 56-78.

Masyeni, S., Haque, U., & Syafruddin, D. (2021). The Relationship Between Climate Factors and Dengue Hemorrhagic Fever Incidence in Jakarta, Indonesia. Global Health Action, 14(1).

Nazir, M.Y. (2021). Penurunan Kasus DBD di Provinsi Riau. Berita Riau Sehat, 12 Agustus 2021. Diakses dari https://rskriausehat.com

Prahutama, A., Ningrum, D.K., & Purhadi (2017). Analisis Regresi Binomial Negatif Kasus DBD. Saintika Medika: Jurnal Ilmiah Kesehatan, 13(2), 132-142.

Prahutama, A., Sudarno, Suparti, and Mukid, M. A. (2017). Analisis Faktor-Faktor Yang Mempengaruhi Angka Kematian Bayi Di Jawa Tengah Menggunakan Regresi Generelized Poisson Dan Binomial Negatif. Statistika, 5, 1–6.

Ramadhani, N., Yanuar, F., and Yozza, H. (2018). Penerapan Regresi Poisson Generalized Poisson Regression Dalam Memodelkan Kasus Angka Kematian Ibu Di Sumatera Barat Tahun 2015. Jurnal Matematika UNAND, 7, 112. https://doi.org/10.25077/jmu.7.2.112-117.2018.

Rochmad (2013), “Aplikasi Metode Newton-Raphson Untuk Menghampiri Solusi Persamaan Non Linear,†Jurnal MIPA, 36, 193–200.

Sauddin, A., Auliah, N. I., and Alwi, W. (2020). Pemodelan Jumlah Kematian Ibu di Provinsi Sulawesi Selatan Menggunakan Regresi Binomial Negatif, Jurnal MSA (Matematika dan Statistika serta Aplikasinya ), 8, 42

Sauddin, S., Singh, Y., & Tripathi, S. (2020). Regression model for overdispersed count data in epidemiology. Journal of Applied Quantitative Methods. 14(2), 104-117.

Tobing, T., 2011. Pemodelan Kasus Demam Berdarah Dengue (DBD) Di Jawa Timur Dengan Model Poisson Dan Binomial Negatif. Bogor: Institut Pertanian Bogor.

Trapsilowati, W. (2007). Virologi Demam Berdarah Dengue. Majalah Ilmu Kefarmasian, 4(1), 12-26.

Utami, T. W. (2013). Analisis regresi binomial negatif untuk mengatasi overdispersion regresi poisson pada kasus demam berdarah dengue, Jurnal Statistika Universitas Muhammadiyah Semarang, 1, 0–6

Utami, W.T. (2013). Overdispersi pada Regresi Poisson. Buletin Ilmiah Statistika, 16(2), 49-56.

Published

2023-12-30

How to Cite

Rangkuti, A. A., & Sirait, H. (2023). Analysis of Risk Factors for Dengue Hemorrhagic Fever in Riau Province using Negative Binomial Regression. Operations Research: International Conference Series, 4(4), 126–140. https://doi.org/10.47194/orics.v4i4.280