Investigating Long-Run and Short-Run Dynamics of Palm Oil Production with Key Factors Using the VECM Method
Keywords:
Palm oil production, rainfall, number of bunches, bunch weight, vector error correction modelAbstract
This study investigates the long-run and short-run relationships among palm oil production, rainfall, the number of bunches per palm (NOB), and average bunch weight (BTR) using the Vector Error Correction Model (VECM). Monthly data from 2015 to 2024 obtained from PT Perkebunan Nusantara IV (PTPN IV) Regional III, Sei Rokan Estate, were analyzed. Descriptive statistics indicate high variability in rainfall and relatively balanced distributions for production, NOB, and BTR. The Augmented Dickey-Fuller (ADF) test confirmed that all variables became stationary after first differencing, and the Johansen cointegration test identified three cointegrating relationships, suggesting both short-run and long-run linkages among variables. The VECM estimation results reveal positive long-run relationships for palm oil production (ECT = 0,052), rainfall (ECT = 0,090), and NOB (ECT = 0,042), indicating that these variables move toward long-run equilibrium in the same direction. In the short run, previous rainfall significantly affects both current palm oil production and NOB, with coefficients of 0,203 and 0,178, respectively, highlighting the critical role of rainfall fluctuations in influencing short-term productivity and fruit development. Model evaluation using the Root Mean Square Error (RMSE) shows low prediction errors across all variables, with rainfall having the highest RMSE (1,334) and NOB the lowest (0,962), confirming the model’s strong predictive performance. Overall, the findings demonstrate that the VECM approach effectively captures both long-run equilibrium and short-run dynamics among key determinants of palm oil productivity in the Sei Rokan plantation.References
Ambala, R. N., & Anarfo, E. B. (2022). A Vector Autoregression (VAR) analysis of corruption, economic growth, and foreign direct investment in Ghana. Cogent Economics and Finance, 10(1).
BMKG. (2025). Curah hujan. BMKG. https://gaw-bariri.bmkg.go.id/index.php/karya-tulis-dan-artikel/gawsarium/262-curah-hujan
Granger, C. W. J., & Newbold, P. (1978). Spurious regressions in econometrics. Journal of Econometrics, 2(2), 111–120.
Hanck, C., Arnold, M., Gerber, A., & Schmelzer, M. (2025). Introduction to econometrics with R. Stata Press. https://www.econometrics-with-r.org/14.6-llsuic.html
Hasibuan, H. A. (2020). Penentuan rendemen, mutu dan komposisi kimia , minyak sawit dan minyak inti sawit tandan buah segar bervariasi kematangan sebagai dasar untuk penetapan standar kematangan panen. Jurnal Penelitian Kelapa Sawit, 28(3), 123–132.
Johansen, S. (1988). Statistical analysis of cointegration vectors. Journal of Economic Dynamics and Control, 12(2–3), 231–254.
Juselius, K. (2019). The Cointegrated VAR Model: Methodology and Applications. Oxford University Press.
Krisdiarto, A. W., Sutiarso, L., & Widodo, K. H. (2017). Optimasi kualitas tandan buah segar kelapa sawit dalam proses panen-angkut menggunakan model dinamis. Agritech, 37(1), 102.
Lubis, A. U. (2008). Kelapa sawit (Elaeis guineensis Jacq.) di Indonesia. Pusat Penelitian Marihat Bandar Kuala Pematang Siantar.
Lütkepohl, H. (2005). New introduction to multiple time series analysis. Springer.
Makridakis, S., Wheelwright, S. C., & Hyndman, R. J. (1999). Forecasting method and applications (2nd ed.). Erlangga.
Morley, S. K., Brito, T. V., & Welling, D. T. (2018). Measures of model performance based on the log accuracy ratio. Space Weather, 16(1), 69–88.
PKT Group. (2024). Cara menghitung berat janjang rata-rata (BJR) kelapa Sawit. PKT Group. https://pkt-group.com/sawitnotif/ketahui-cara-menghitung-berat-janjang-rata-rata-bjr-kelapa-sawit/?utm_source=chatgpt.com
Prahutama, A., Ispriyanti, D., & Tiani Wahyu Utami, D. (2019). Pemodelan sektor-sektor inflasi di Indonesia menggunakan Vector Autorgressive (VAR). 20(1), 47–52.
PTPN IV. (2025). Company profile. PTPN IV. https://www.ptpn4.co.id/about
Qu, Z., & Perron, P. (2007). Estimating and testing structural changes in multivariate regressions. Econometrica, 75(2), 459–502.
Soekartawi. (2002). Prinsip dasar ekonomi pertanian: Teori dan aplikasi (2nd ed.). PT Raja Grafindo Persada.
Srinivas, T. A. S., Sravanthi, Y., Kumar, Y. V., & Srihith, I. V. D. (2024). Data standardization: Key to effective data integration. Advanced Innovations in Computer Programming Languages, 6(1), 1–4.
Van Dao, D., Ly, H. B., Trinh, S. H., Le, T. T., & Pham, B. T. (2019). Artificial intelligence approaches for prediction of compressive strength of Geopolymer Concrete. Materials, 12(6), 1–17.
Wei, W. W. (2006). Time series analysis: Univariate and multaivariate methods. Pearson Education.
Winarno, S., Usman, M., Warsono, Kurniasari, D., & Widiarti. (2021). Application of Vector Error Correction Model (VECM) and impulse response function for daily stock prices. Journal of Physics: Conference Series, 1751(1–17).
Published
How to Cite
Issue
Section
Copyright (c) 2025 Lathifah Zahra, Gustriza Erda

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
With the receipt of the article by Editorial Board of the Operations Research: International Conference Series (ORICS) and it was decided to be published, then the copyright regarding the article will be diverted to ORICS
Operations Research: International Conference Series (ORICS) hold the copyright regarding all the published articles and has the right to multiply and distribute the article under Creative Commons Atribusi 4.0 Internasional.Â
Copyright tranfer statement the author to the journal is done through filling out the copyright transfer form by author. The form can be downloaded HERE.Â







