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Abstract  

A Latin square arrangement is an arrangement of r symbols in r rows and c columns, such that every symbol occurs once in each 

row and each column. When two Latin squares of same order are superimposed on one another, in the resultant array if every 

ordered pair of symbols occurs exactly once, then the two Latin squares are said to be orthogonal. If in a set of Latin squares, any 

two Latin squares are orthogonal then the set is called Mutually Orthogonal Latin Squares of order r. Methods of constructing  

when p is prime or prime power are discussed here. A finite projective plane of order n exists if n is a prime or power of a prime 

number and it has been assumed that this is the only one that exists, reminiscent of the conjecture about the existence of     

Latin squares n x n orthogonal to each other, so that these two existence problems are equivalent. 
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1. Introduction  

Finite projective planes, despite following a rather short set of axioms do not have much know about them and are 

very hard to find, unless specific circumstances are met. Not only are they hard to find, but we do not know even 

whether they are possible or impossible to create outside these circumstances. The main purpose of this thesis is 

exploring this question: for which cases is it possible to construct planes and how, as well as proving a specific case 

as impossible for a plane by a computer search. The thesis also seeks to cultivate a general understanding for these 

structures by using graphical tools in order to support a visual intuition of these rather abstract objects, as well as by 

showcasing a potential application in secret sharing (Hall, 1967). 

At times the situations the experimenters found themselves made them to be totally engulfed in constructing 

designs in an efficient way without losing no or much information. This kind of situations arise when the number of 

experimental units in an experiment is often larger than that can be accommodated in the available blocks of relatively 

uniform experimental units, in this situation it is often desirable to have resolvable incomplete block designs in which 

the incomplete blocks can be arranged in complete blocks or replicates. Nowadays, it has been noticed that the levels 

at which the treatments increase are so high due to a lot of favorable factors that are peculiar to different field of 

studies while the experimental units that receive the treatments are smaller in numbers. Meanwhile, for the 

experimenters to be able to rise to these occasions or challenges, the use of resolvable incomplete block designs is 

inevitable. 

From Latin square enumeration for example, refer to (Wilson, 1974), we can know that how many Latin squares 

can exist for a given s the order of the Latin square, but question is of their construction. There seems to be no good 

algorithm for constructing a random Latin square. One natural approach to counting and constructing Latin squares is 

to do it one row at a time, there by defining, “Latin rectangles”, and then try to obtain exact and asymptotic formulae, 

using the structural properties of the under lying templates (Denes and Keedwell, 1974; Denes, and Keedwell, 1991). 

Latin Squares were invented and studied by Euler in 1782.  

A Latin square arrangement is an arrangement of r symbol in    cells arranged in r rows and r columns such that 

each symbol occurs once in each row and in each column. This r is called the order of the Latin square. Two Latin 

squares of the same order r when superimposed on one another and if each pair of symbols in the resultant array 

occurs only once they are called orthogonal. On a given set of N Latin squares any two Latin squares are Orthogonal 
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then the set is called mutually orthogonal latin squares of order r. The cardinality of this set N is denoted by     

 ( )     . 

2. Method  

A `Latin square' is a square array or matrix in which each row and each column consists of the same set of entries 

without repetition. We shall generally restrict attention to Latin squares and rectangles in which the entries are 

positive integers. A p x q Latin rectangle (with entries in {1, 2, …, n}) is a p x q matrix with entries chosen from {1, 

2, ... , n} and with no repeated entry in any row or column. In the cases when p = q = n it is called a Latin square: in 

that case each row and each column consist precisely of the n numbers 1, 2, … and n. 

Any p x n Latin rectangle with entries in {1, ..., n} can be extended to an n x n Latin square (Bryant, Victor.1993). 

Let L be a p x q Latin rectangle with entries in {1, ..., n} and let r and m be integers with        . Then the 

number of members of (1, ..., n} which occur exactly m times in L and which occur in all of the first r rows of L 

cannot exceed 
(   )(   )

   
 (1) 

Let t members of {1, … n} occur exactly m times in L and occur in all the first r rows of L. Then those t numbers 

each occur exactly m – r times in the lower shaded region of L. The other n   t numbers in {1, …, n} each occur at 

most p   r times in that same shaded region. So, counting the total occurrences in that shaded region gives 

(p   r)q   t(m   r) + (n   t)(p   r) (2) 

which reduces to 

t(p   m)   (n   q)(p   r) (3) 

 

 
Figure 1. The p x q Latin rectangle L 

 

    The p x q Latin rectangle L with entries in {1, ... , n} can be extended to an n x n Latin square if and only if L(i), the 

number of occurrences of i in L, satisfies  ( )        for each i with        
Assume first that L can be extended to an n x n Latin square as shown: 

 

 
Figure 2. The n x n Latin rectangle L 

 

Then i occurs  ( ) times in L, and p times in L and M together. So, i occurs    ( ) times in M. But i occurs n   q 

times in M and Q together. 

     If n is a prime or a power of a prime then there exists n  1 mutually orthogonal n x n Latin squares (Bryant, 

Victor.1993). Until now our n x n Latin squares have had entries from {1, 2, ... , n} but in this it is more convenient to 

choose the entries from {0, 1, . . . , n – 1}. In modular arithmetic the set of numbers {0, 1, 2, ..., n – 1} can be added 

and multiplified in a fairly sensible way `mod n' to give answers back in the same set. So, for example, the addition 

and multiplication tables `mod 5' are as shown: 
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Figure 3. The Addition and Multiplication Tables `mod 5' 

Essentially the arithmetic operations are the normal ones but then the answers are reduced `mod n' by taking away all 

possible multiples of n. (If you have studied sufficient abstract algebra, you will know that in the case when n is prime 

the above process defines a `field'.) 

    Now let n be prime and let + and   denote addition and multiplication `mod n'. Define a collection              of n 

x n matrices by the rule that the (i, j)th entry of    is   (   )  (   )  (If we do this in the case n = 5 we will get 

four 5 x 5 Latin squares very closely related to the collection displayed in the earlier example.) Clearly this process 

defines a collection of n x n matrices with entries chosen from {0, 1 …, n – 1} we now show that this collection 

consists of n – 1mutually orthogonal n x n Latin squares. 

(i)     has no repeated entry in column j. If the (i, j)th entry equals the (i', j)th entry in   , where     , then             

  (   )  (   )    (    )  (   ) and (as + and   behave very naturally) we can deduce that   
(   )    (    ). This means that  (   )      (    ) give the same remainder when divided by n and 

that their difference,  (    ), is divisible by n. Since n is prime, we can deduce that either k or      is divisible 

by n. But as        , and             this is clearly impossible. Hence no    has a repeated entry 

in any of its columns. 

(ii)    has no repeated entry in row i. This is very similar to (i), but slightly easier, and is left as an exercise. 

(iii) Properties (i) and (ii) confirm that each    is a Latin square. We now show that    and     are orthogonal. 

    If      and    and     are not orthogonal then across these two squares some pair will occur twice, in the (i, j)th 

and (i', j')th places, say. 

 

 
Figure 4.    and      Orthogonality 

 

But then the (i, j)th entry of    will equal the (i', j')th entry of    and the (i, j)th entry of     will equal the (i', j')th 

entry of    ; i.e.   (   )  (   )    (    )  (    ) and    (   )  (   )     (    )  (    ). 
Subtracting these two equations shows us that (    )(    ) is divisible by n, but an argument similar to that in (i) 

using the primness of n shows that this is impossible. Hence    and     are indeed orthogonal. We have therefore 

seen how to construct n   1 mutually orthogonal n x n Latin squares in the case when n is prime. We now give a brief 

outline of how to extend this to the case when n is a power of a prime. 

     In our construction above the key fact about {0, 1, ...,    } under + and   is that it forms a field (essentially the 

operations behave in a sensible arithmetic fashion and, in particular, if the product of two numbers is zero then one of 

the numbers must itself be zero). In the case when n is a power of a prime this set-up fails to be a field (for example if 

    where     then         ). However, in this case it is still possible to define other operations of addition 

and multiplication on {0, 1, ...,    } which make it into a field: this field is known as the Galois field GF(n). The 

details of the operations (defined via polynomials) need not concern us here but once we know that such a field exists 

the first part of this proof can easily be generalized to the case when n is a power of a prime. 

In that proof we essentially saw that if there exists a field of n elements then there exist     mutually orthogonal n x 

n Latin squares (but not conversely) and it is known that such a field exists precisely when n is a prime or a power of 

a prime. But it still remains an unsolved conjecture that there exists a `full set' of n – 1 mutually orthogonal n x n 

Latin squares if and only if n is a prime or a power of a prime. We shall return to this conjecture shortly. 
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3. Results  and Discussion  

    There exists a finite projective plane of order n if and only if there exist n – 1 mutually orthogonal n x n Latin 

squares. Sketch We shall merely illustrate the connection between the two problems by constructing a finite projective 

plane of order 3 from two given orthogonal 3 x 3 Latin squares and, conversely, by constructing two orthogonal 3 x 3 

Latin squares from a given finite projective plane of order 3. Of course, this does not constitute a proof of the general 

result but the techniques do generalize easily, and we include some comments about the general case. 

Start with two orthogonal 3 x 3 Latin squares: 

 
Then write them as one combined matrix as we did earlier: 

 
Now introduce a set of 13 points *                                      + (which can be thought of as referring to the 

columns 1 - 4 and the rows 1 - 9). Then consider `lines' formed by the following subsets of four of those points: 

 
*           + 

 

and any of the form 
 

{           } 

 

where the three entries in M in the jth column and in rows s, t and u are the same. 

For example one of these sets will be *           + because the entries in rows 3, 6 and 9 of column 2 are all the same 

(namely 3). Overall this gives the following 13 `lines': 

 

 
 

It is now straightforward to check that these 13 points and sets satisfy the axioms of a finite projective plane in the 

case n = 3. In general, the      mutually orthogonal n x n Latin squares will give an    (   ) matrix M with 

entries in {1, …, n} and with no rectangle of entries of the form 

 

 
 

The above construction will then give        points *                 + and         lines each containing n 

+ 1 points and such that each pair of points lies in just one line. In general the non-rectangle property of M will ensure 

that these points and lines satisfy the axioms of a finite projective plane. For example, how many points will be in 

both the lines 
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{         } and  {           }? 

 

If j = j' then the    is clearly the only point in common. And if      then the first line will have resulted from all the 

rows containing a `1' say in the j
th
 column, and the second line will have resulted from all the rows containing a `2' say 

in the j'
th
 column. The non-rectangle 'property of M ensures that the pair (1, 2) occurs precisely once across the 

columns j and j' (in the i
th
 row, say, as shown) and hence that the two given lines intersect in the one point   .  

    Conversely assume that we are given a finite projective plane of order 3. It will consist of 13 points and 13 lines, 

with each line consisting of 4 points. Label the points of one of the j-lines as             and label the remaining points 

as                               . Then, for example, the lines might be: 

 

 
 

The fact that any two of the lines meet in a single point means that, apart from the line *           +, the remaining 12 

lines are bound to fall into four groups of three as follows: 

 
 

Call the first set in each row `1', the second set `2' and the third set `3', as shown. Then define a 9 x 4 matrix M by the 

rule that the (i, j)th entry is k if the pair *     + lies in a set labelled k. In our example this gives rise to the matrix 

 

 
 

We can then use this matrix to read off, in the usual way, the two orthogonal 3 x 3 Latin squares 

 

 
This process will work in general: the finite projective plane will consist of        points and lines and will give 

rise to an    (   ) matrix M with entries in {1, ..., n}. The finite projective plane axioms will ensure that the 

matrix M has the usual non-rectangle property because entries of the form 
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would mean that *      + lies in two of the lines. Hence M will give rise to n – 1 mutually orthogonal n x n Latin 

squares. 

 

4. Conclussion 

    Finite projective planes of order n = 2, 3, 4, 5, 7, 8, 9, and 11 all exist because these are all primes or powers of 

primes and are thus covered by the existence for      mutually orthogonal n x n latin squares . There are no finite 

projective planes of order 6 because, as we noted earlier, there are no orthogonal pairs of Latin 6 x 6 squares. 
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