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Abstract

A Latin square arrangement is an arrangement of r symbols in r rows and C columns, such that every symbol occurs once in each
row and each column. When two Latin squares of same order are superimposed on one another, in the resultant array if every
ordered pair of symbols occurs exactly once, then the two Latin squares are said to be orthogonal. If in a set of Latin squares, any
two Latin squares are orthogonal then the set is called Mutually Orthogonal Latin Squares of order r. Methods of constructing
when p is prime or prime power are discussed here. A finite projective plane of order n exists if n is a prime or power of a prime
number and it has been assumed that this is the only one that exists, reminiscent of the conjecture about the existence of n — 1
Latin squares n x n orthogonal to each other, so that these two existence problems are equivalent.
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1. Introduction

Finite projective planes, despite following a rather short set of axioms do not have much know about them and are
very hard to find, unless specific circumstances are met. Not only are they hard to find, but we do not know even
whether they are possible or impossible to create outside these circumstances. The main purpose of this thesis is
exploring this question: for which cases is it possible to construct planes and how, as well as proving a specific case
as impossible for a plane by a computer search. The thesis also seeks to cultivate a general understanding for these
structures by using graphical tools in order to support a visual intuition of these rather abstract objects, as well as by
showcasing a potential application in secret sharing (Hall, 1967).

At times the situations the experimenters found themselves made them to be totally engulfed in constructing
designs in an efficient way without losing no or much information. This kind of situations arise when the number of
experimental units in an experiment is often larger than that can be accommodated in the available blocks of relatively
uniform experimental units, in this situation it is often desirable to have resolvable incomplete block designs in which
the incomplete blocks can be arranged in complete blocks or replicates. Nowadays, it has been noticed that the levels
at which the treatments increase are so high due to a lot of favorable factors that are peculiar to different field of
studies while the experimental units that receive the treatments are smaller in numbers. Meanwhile, for the
experimenters to be able to rise to these occasions or challenges, the use of resolvable incomplete block designs is
inevitable.

From Latin square enumeration for example, refer to (Wilson, 1974), we can know that how many Latin squares
can exist for a given s the order of the Latin square, but question is of their construction. There seems to be no good
algorithm for constructing a random Latin square. One natural approach to counting and constructing Latin squares is
to do it one row at a time, there by defining, “Latin rectangles”, and then try to obtain exact and asymptotic formulae,
using the structural properties of the under lying templates (Denes and Keedwell, 1974; Denes, and Keedwell, 1991).
Latin Squares were invented and studied by Euler in 1782.

A Latin square arrangement is an arrangement of r symbol in 2 cells arranged in r rows and r columns such that
each symbol occurs once in each row and in each column. This r is called the order of the Latin square. Two Latin
squares of the same order r when superimposed on one another and if each pair of symbols in the resultant array
occurs only once they are called orthogonal. On a given set of N Latin squares any two Latin squares are Orthogonal
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then the set is called mutually orthogonal latin squares of order r. The cardinality of this set N is denoted by
ON)<r-1.

2. Method

A “Latin square' is a square array or matrix in which each row and each column consists of the same set of entries
without repetition. We shall generally restrict attention to Latin squares and rectangles in which the entries are
positive integers. A p x g Latin rectangle (with entries in {1, 2, ..., n}) is a p X g matrix with entries chosen from {1,
2, ..., N} and with no repeated entry in any row or column. In the cases when p = g = n it is called a Latin square: in
that case each row and each column consist precisely of the n numbers 1, 2, ... and n.

Any p x n Latin rectangle with entries in {1, ..., n} can be extended to an n x n Latin square (Bryant, Victor.1993).
Let L be a p x g Latin rectangle with entries in {1, ..., n} and let r and m be integers with 0 < r < m < p. Then the
number of members of (1, ..., n} which occur exactly m times in L and which occur in all of the first r rows of L
cannot exceed

(n—q)(P—1) M
p—m

Let t members of {1, ... n} occur exactly m times in L and occur in all the first r rows of L. Then those t numbers
each occur exactly m — r times in the lower shaded region of L. The other n — t numbers in {1, ..., n} each occur at
most p — r times in that same shaded region. So, counting the total occurrences in that shaded region gives

P-nNgstm-nN+m-t)@p-r) (2)
which reduces to

tp—m<mn-ag)@pP-r (3)

Figure 1. The p x g Latin rectangle

The p x g Latin rectangle L with entries in {1, ..., n} can be extended to an n x n Latin square if and only if L(i), the
number of occurrences of i in L, satisfies L(i) > p + g —n foreachiwith1 <i < n.
Assume first that L can be extended to an n x n Latin square as shown:
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Figure 2. The n x n Latin rectangle L

Then i occurs L(i) times in L, and p times in L and M together. So, i occurs p — L(i) times in M. But i occurs n — q
times in M and Q together.

If nis a prime or a power of a prime then there exists n —1 mutually orthogonal n x n Latin squares (Bryant,
Victor.1993). Until now our n x n Latin squares have had entries from {1, 2, ..., n} but in this it is more convenient to
choose the entries from {0, 1, . .., n - 1}. In modular arithmetic the set of nhumbers {0, 1, 2, ..., n - 1} can be added
and multiplified in a fairly sensible way "'mod n' to give answers back in the same set. So, for example, the addition
and multiplication tables “'mod 5' are as shown:
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+|1 01 2 3 4 01 2 3 4
o0 1 2 3 4 0|0 0O0DO0OO0
11 23 40 101 2 3 4
212 3 401 210 2 4 1 3
313 401 2 3103 1 4 2
414 01 2 3 4|0 4 3 21
Addition mod 5 Multiplication mod 5

Figure 3. The Addition and Multiplication Tables ‘mod 5'

Essentially the arithmetic operations are the normal ones but then the answers are reduced "mod n' by taking away all

possible multiples of n. (If you have studied sufficient abstract algebra, you will know that in the case when n is prime

the above process defines a “field'.)
Now let n be prime and let + and - denote addition and multiplication "'mod n'. Define a collection L4,...,L,_; ofn

X n matrices by the rule that the (i, j)th entry of Ly is k = (i — 1) + (j — 1). (If we do this in the case n = 5 we will get

four 5 x 5 Latin squares very closely related to the collection displayed in the earlier example.) Clearly this process

defines a collection of n x n matrices with entries chosen from {0, 1 ..., n — 1} we now show that this collection
consists of n — Imutually orthogonal n x n Latin squares.

(i) L, has no repeated entry in column j. If the (i, j)th entry equals the (i', j)th entry in L,, where i > i’, then
k«s(i—-1)+(G—-1)=k=+({"—1)+ (¢ —1) and (as + and - behave very naturally) we can deduce that k *
(i—1)=k=*(i'—1). This means that k(i — 1) and k(i" — 1) give the same remainder when divided by n and
that their difference, k(i —i'), is divisible by n. Since n is prime, we can deduce that either k or i — i’ is divisible
byn Butasl1<k<n-—1,and 1<i—i"<n-—1thisis clearly impossible. Hence no L, has a repeated entry
in any of its columns.

(ii) Ly has no repeated entry in row i. This is very similar to (i), but slightly easier, and is left as an exercise.

(iii) Properties (i) and (ii) confirm that each L, is a Latin square. We now show that L, and L, are orthogonal.

If k # k" and L, and L, are not orthogonal then across these two squares some pair will occur twice, in the (i, j)th
and (i', jHth places, say.

X = ] _li — ]
LI‘— - Lk'=
x | ¥ 1
T T 1
I i J

Figure 4. L, and L+ Orthogonality

But then the (i, j)th entry of L, will equal the (i', j")th entry of L, and the (i, j)th entry of L, will equal the (i', j')th
entryof e kx(—D+(G-D=k+{@"-D+( ' —Dandk’'«(—-D+(G-1D=k'«{@"-1)+ (" - 1).
Subtracting these two equations shows us that (k — k")(i — i") is divisible by n, but an argument similar to that in (i)
using the primness of n shows that this is impossible. Hence L, and L, are indeed orthogonal. We have therefore
seen how to construct n — 1 mutually orthogonal n x n Latin squares in the case when n is prime. We now give a brief
outline of how to extend this to the case when n is a power of a prime.

In our construction above the key fact about {0, 1, ..., n — 1} under + and - is that it forms a field (essentially the

operations behave in a sensible arithmetic fashion and, in particular, if the product of two numbers is zero then one of
the numbers must itself be zero). In the case when n is a power of a prime this set-up fails to be a field (for example if
n = p"where r > 1 then p*p"~1 = 0). However, in this case it is still possible to define other operations of addition
and multiplication on {0, 1, ..., —1 } which make it into a field: this field is known as the Galois field GF(n). The
details of the operations (defined via polynomials) need not concern us here but once we know that such a field exists
the first part of this proof can easily be generalized to the case when n is a power of a prime.
In that proof we essentially saw that if there exists a field of n elements then there exist n — 1 mutually orthogonal n x
n Latin squares (but not conversely) and it is known that such a field exists precisely when n is a prime or a power of
a prime. But it still remains an unsolved conjecture that there exists a “full set' of n — 1 mutually orthogonal n x n
Latin squares if and only if n is a prime or a power of a prime. We shall return to this conjecture shortly.
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3. Results and Discussion

There exists a finite projective plane of order n if and only if there exist n — 1 mutually orthogonal n x n Latin
squares. Sketch We shall merely illustrate the connection between the two problems by constructing a finite projective
plane of order 3 from two given orthogonal 3 x 3 Latin squares and, conversely, by constructing two orthogonal 3 x 3
Latin squares from a given finite projective plane of order 3. Of course, this does not constitute a proof of the general
result but the techniques do generalize easily, and we include some comments about the general case.

Start with two orthogonal 3 x 3 Latin squares:

'3 1 2) 2 1 3
L=|2 31 L,={1 3 2
12 3 32 1)

Then write them as one combined matrix as we did earlier:

(\

1

[P

1

2 +«— e.g. the (1, 3)rd entry of
21 L, is 2 and of L, is 3.
3

2
3

1 2

1 1 3
2 2 2 )
3 3 1

Now introduce a set of 13 points {cy, ¢y, €3, Cq, 71,72, 73, T, 75, T, 77, Tg, To} (Which can be thought of as referring to the
columns 1 - 4 and the rows 1 - 9). Then consider “lines' formed by the following subsets of four of those points:

e lad o k2 B2 N2

e

{Cl' C2,C3, C4}

and any of the form

{c]-, Te, Ty, ru}

where the three entries in M in the jth column and in rows s, t and u are the same.
For example one of these sets will be {c,,73, 76,79} because the entries in rows 3, 6 and 9 of column 2 are all the same
(namely 3). Overall this gives the following 13 “lines":

\ . \ - . . ™ i
CTCTRLN % STV P NS N R LU O S % S VA 0 T Y

[ I . M . | .
(€2 Fpa Faa Tay lenry, 1o, 1y} 100 Py Pen T €3 Py Py Py {f-;u r'3|~ Fas J"B}

[P 1] §- §e . . 1
130 F1aF5s Ty |'1a‘r2|r4-ru} :'-'-mh»-rmrﬂ} {H-ra-rs-r?,--

It is now straightforward to check that these 13 points and sets satisfy the axioms of a finite projective plane in the
case n = 3. In general, the n — 1 mutually orthogonal n x n Latin squares will give an n? x (n + 1) matrix M with
entries in {1, ..., n} and with no rectangle of entries of the form

The above construction will then give n? 4+ n + 1 points {cy, ..., cy—1 71,7p2} @and n? + n + 1 lines each containing n
+ 1 points and such that each pair of points lies in just one line. In general the non-rectangle property of M will ensure
that these points and lines satisfy the axioms of a finite projective plane. For example, how many points will be in
both the lines
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{Cj,ri,.. }and {CI rit, }

If j = j' then the ¢; is clearly the only point in common. And if j # j’ then the first line will have resulted from all the
rows containing a “1' say in the j™ column, and the second line will have resulted from all the rows containing a “2' say
in the j"™ column. The non-rectangle 'property of M ensures that the pair (1, 2) occurs precisely once across the
columns j and j' (in the i row, say, as shown) and hence that the two given lines intersect in the one point r;.

Conversely assume that we are given a finite projective plane of order 3. It will consist of 13 points and 13 lines,
with each line consisting of 4 points. Label the points of one of the j-lines as ¢y, c,, c3, ¢, and label the remaining points
asry, 1y, 13,14, s, Te, 17, g, dan 1. Then, for example, the lines might be:

enen el fenmmn) {enrrs el (o Fo}
{lenrstunt {enrrsrst (enmter) {enrfenl {30 r fs)
SN SN S TR N9 5 SR FOW OO S R TS Sy
The fact that any two of the lines meet in a single point means that, apart from the line {c,, c,, c3, ¢4}, the remaining 12
lines are bound to fall into four groups of three as follows:
{enrrsorl {en s}

containing ¢,:  {C, Mt h

J *
1Ca0 Py Fas Ty {‘-3»"1-’5-’05

containing cy.  {ca, Fa P Pa} {ea ra T me} (€20 Py 1, 1)
containing ¢3;  {Cy, Py Tes P}

. | .
{Ca i Tes Ty} €4 Py s 1)

I 2 3

containing ¢g. g, Fa Fas o

Call the first set in each row "1', the second set “2' and the third set “3', as shown. Then define a 9 x 4 matrix M by the
rule that the (i, j)th entry is k if the pair {c;, 7;} lies in a set labelled k. In our example this gives rise to the matrix

1T 1 3 2
1 2 1 1
1 3 2 3
2 1 2 1
M = 2 2 3 3 e.g. {cy, rs} lies in the set number 3
2 3 1 2
i1 o1 3
3 2 2 2

—
]
Fad
L]
—

We can then use this matrix to read off, in the usual way, the two orthogonal 3 x 3 Latin squares

'3 1 2) 2.1 1
Ly=[2 31 L,=[1 32
W1 203 V32 1)

This process will work in general: the finite projective plane will consist of n2 + n + 1 points and lines and will give
rise to an n? x (n + 1) matrix M with entries in {1, ..., n}. The finite projective plane axioms will ensure that the
matrix M has the usual non-rectangle property because entries of the form



Suyudi / International Journal of Global Operations Research, Vol. 3, No. 2, pp. 74-79, 2022 79

l
®
)

would mean that {r;,r;/} lies in two of the lines. Hence M will give rise to n — 1 mutually orthogonal n x n Latin
squares.

4. Conclussion

Finite projective planes of order n = 2, 3, 4,5, 7, 8, 9, and 11 all exist because these are all primes or powers of
primes and are thus covered by the existence for n — 1 mutually orthogonal n x n latin squares . There are no finite
projective planes of order 6 because, as we noted earlier, there are no orthogonal pairs of Latin 6 x 6 squares.
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