Available online at http://www.iorajournal.org/index.php/ijgor/index

. . ! e-ISSN: 2722-1016 !
International Journal of Global Operations | pISSN: 2723-1739 |

Research @ Lo _________/

Vol. 3, No. 3, pp. 86-95, 2022

Determining The Shortest Path of Car Parking Layout in FMIPA UNPAD
Using Floyd-Warshall Algorithm

Mochamad Suyudi 1*, Asma Ainun Mardiyah 2

12 Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Padjadjaran
JI. Ir. Soekarno KM 21 Jatinangor, Sumedang Indonesia

*Corresponding author email: moch.suyudi@gmail.com

Abstract

Vehicles that are increasingly needed by the community increase the volume of vehicle traffic, resulting in a high demand for
parking spaces. Especially in public places such as campuses, offices, shopping centers, and other places. A parking lot is also
needed that has a maximum capacity by determining the layout of the vehicle mileage in finding a parking location. In this paper,
we are looking for the shortest path in the car park layout at FMIPA UNPAD using the Floyd-Warshall algorithm.

Keywords: Graph; Parking lot; Floyd-Warshall Algorithm; shortest path

1. Introduction

Vehicle is a means of transportation to transport people or goods. The size or capacity of the vehicles also varies
from those that only carry two people to those that can accommodate hundreds of people. With increasing years and
the human population, the need to use or own a vehicle is increasing. Congestion on the road is getting longer due to
the increasing number of vehicles.

Increased traffic and vehicle volumes have also resulted in increased demand for parking spaces for certain areas,
such as business areas/or areas that have activities that make parking a major problem (Fortuna, Sandra, Civil, &
Trisakti, 2020). Parking lots are increasingly needed, especially in public places such as shopping centers, hospitals,
offices, campuses, schools, places of worship, and other places. A parking lot is needed that has a maximum capacity
and pays attention to comfort for its users by determining the layout and travel time of the vehicle in finding a parking
location.

The shortest path problem is a problem to find a path between two vertices such that the sum of the weights from
the edge of the arrangement can be minimized (Kumar, R.., & Kumar, M. 2010). Several algorithms that have been
developed to solve the shortest path problem include the Dijkstra algorithm and the Floyd-Warshall algorithm.
Dijkstra's algorithm is an algorithm for determining the shortest path from one vertex to another in a weighted graph,
the distance between vertices has a weight on each edge of the graph (Vasudev, C. 2006). In this paper, we use one of
the methods to determine the shortest path, namely the Floyd-Warshall method. Floyd-Warshall is an algorithm that
can be used in calculating the shortest path, and can compare all possible paths in the graph for each edge of all
existing vertices. Floyd-Warshall algorithm can be used in parking layouts to calculate the shortest path. The most
efficient algorithm in determining the shortest path is Dijkstra's algorithm, however, in the problem of the shortest
path where parking is located, the Floyd-Warshall algorithm is more effective because it is able to compare all
possible paths on each edge of the vertices in the graph (Jayanti, 2017).

In this paper, we will look for the shortest path to the car parking at the Faculty of Mathematics and Natural
Sciences (FMIPA) Universitas Padjadjaran using the Floyd-Warshall Algorithm, because the Floyd-Warshall
Algorithm can solve parking layout problems effectively and optimally by finding a path. closest from the parking
entrance to the parking lot.

2. Method

The shortest path problem discusses determining the path with the lowest total weight from the initial vertex to the
destination vertex in a weighted graph. The shortest path can be interpreted as the smallest path between the two
vertices obtained. There are several algorithms that can find the shortest path in a weighted graph. In this study using

Suyudi et al. / International Journal of Global Operations Research, Vol. 3, No. 3, pp. 86-95, 2022 87

the Floyd-Warshall algorithm. The algorithm that is often used in the shortest path problem is the Dijkstra algorithm,
but for the parking lot layout problem the Floyd-Warshall algorithm is more effective.

The Floyd-Warshall algorithm was invented in 1967 by Robert W. Floyd. Floyd-Warshall algorithm can calculate
the smallest weight of all paths that connect between a pair of vertices and is carried out at the same time. Comparing
all possible paths on each edge of all vertices in the graph (Ramadhan, Siahaan, & Mesran, 2018).

The Floyd-Warshall algorithm is one of dynamic programming that performs problem solving by looking at the
solution that will be obtained as an interconnected result. The solution is obtained from the previous stage solution
and can allow more than one solution (Fatmala, Yudatama, & Burhanuddin, 2019). The Floyd-Warshall algorithm
uses the following procedure (Rosen, K. H. 2012):

Fori=1ton
Forj=1ton
d(vi, vy) = w(vi, v))
Fori=1ton
Forj:=1ton
Fork:=1ton
Ifw(vi, vj) > w(v;,vg) + W(vk,vj)
then w(vi, vj) replace with w(v;, vy,) + W(Uk, vj)
repeat[w(v;, v;)], {w(v;, v;) is the length between v; and v;; For 1 < i <n,1<j <n}.

The above algorithm only calculates the total shortest distance to all vertices but does not show the path traversed
which results in the shortest path. To be able to find out the path traversed so that the shortest path is found, a square
matrix Z of size n x n must be added, with initialization (Azis, Mallongi, Lantara, & Salim, 2018):

i if W9 # oo
o= 1M (1)

If in the k-th iteration there is an exchange between w(v;, v;) with w(v;, vi) + w(vy, v;), then the value must be
changed Z[i, j] with value Z[i, k]. Thus the Floyd-Warshall algorithm procedure becomes:

W =Wy, Z =2,

Fori=1ton,

Forj =1ton,

Fork = 1ton,

IfWIi,j] > Wi, k] + W[k,], then:
Replace Wi, j] with Wi, k] + W[k, j]
Replace Z[i, j] with Z[i, k]
W*=W;zZ*=12

The matrix W* is the shortest adjacency matrix and W;; is the shortest route from vertex v; to v;. Z* is a matrix that
shows the path that must be passed by the origin vertex to the end vertex.

3. Results and Discussion

The FMIPA UNPAD parking lot has 3 rows of car parking lots with 46 parking lots. The area of each parking lot is
2.5 x 5 meters. The FMIPA UNPAD car park has different entrances and exits, but does not have a unidirectional
route rule so it can be reversed or passed in two directions. Here only calculates the closest distance from the entrance
to the parking lot not to the parking exit. The Figure 1 is a picture of a floor plan for the FMIPA UNPAD car parking.

]

Figure 1. Parking Plan FMIPA UNPAD

Suyudi et al. / International Journal of Global Operations Research, Vol. 3, No. 3, pp. 86-95, 2022 88

From the floor plan of the FMIPA UNPAD car park, a graph can be formed by assigning a weight to each edges of

the graph.

fg Cip €11 Cpp Ci3 Cya

b-} bS bs b? bB b‘} Ii'}J.[! bll blﬁ I1}13 Ii'}1--1 blS

Figure 2. Parking Graph FMIPA UNPAD

Floyd-Warshall algorithm calculates all possible shortest paths to all vertices. In this study will also display the
path traversed as to obtain the shortest path. Then the Floyd-Warshall algorithm procedure used is as follows:

W =Wy Z =2,
Fori =1ton,
Forj=1ton,
Fork = 1ton,

IfWIi,j] > WIi, k] + W[k, j], then:
]

Replace Wi, j] with Wi,
Replace Z[i, j] with Z[i, k]
W*=W;Z*=127

+Wlk,j]

The matrix W* is the shortest adjacency matrix and W;; is the shortest route from vertex v; to v;. Z* matrix is a matrix

that shows the path that must be passed

by the origin vertex to the end vertex.

Change the weighted graph in Figure 4.2 into a matrix W, with dimensions of n x n, where n is the number of
vertices, which is 46 vertices. Vertex a, is the entrance to the parking lot and vertex b;to vertex d4¢ is the parking lot.
The problem in this study is to find the shortest path from the entrance to the parking lot using the Floyd-Warshall

algorithm. W, matrix as follows.

Table 1. Matrix of parking lot graph of FMIPA UNPAD
i\j a4 by b, bz by bs bsg b; bg by di dyz3 dyy dys dye
a;, 0 19 © o o ®w o w w © o0) o0 o0)
by 19 0 3 ®© ® o o w o W o0 o0) o0 0
b, o 3 0 3 ®© o o o ®o ® ©w o o 0
b o o 3 0 3 o oo ®w w ® 0 0 0 0 0
by ®© o o 3 0 3 © o o © ©w o o 0
by © o o o 3 0 3 oo o o 0 0 o) © o0
bg ®© o o o o 3 0 3 o o 0 o0 0 0 o0
b; o© o o o®o o o 3 0 3 o 0 0 0 © o0
bg ®© o © o o o o© 3 0 3 0 o0 0 0 o0
b9y o© o o ®© ®o o oo o 3 0 0 0 0 0 0
dij © o© o o o o W W 0 o 0 3 0 0 o0
diz ®©® © © © o W o 0 0 3 0 3 © o0
dyy © o© o o o o 0 W 0 o 0 3 0 3 o
dig o© ®© o o W o o o W o 0 o0 3 0 3
dig ®© © o © o o 0 0 0 © 0 oS 0 3 0

At this stage only displays the cells in the matrix that change, for example:

Suyudi et al. / International Journal of Global Operations Research, Vol. 3, No. 3, pp. 86-95, 2022 89

Vertex a; =
Vertex b; =
Vertex b, =
Vertex by =
Vertex b, =
Vertex by =

Vertex bg =

Vertex b, =

Vertex bg =

Vertex by =10
Vertex by =11
Vertex by, =12
Vertex b;, = 13
Vertex b;; = 14

Vertex ¢; =17
Vertex ¢, =18
Vertex c; =19
Vertex ¢, =20
Vertex cg =21
Vertex ¢, =22
Vertex c; =23
Vertex cg =24
Vertex cg =25

Vertex c;o = 26
Vertex ¢4 = 27
Vertex c¢;, = 28
Vertex ¢;53 =29
Vertex c;4 = 30

Vertex by, = 15
Vertex b;s = 16

Vertex d; =31
Vertex d, =32
Vertex d; =33
Vertexd, =34
Vertex ds =35
Vertex dg =36
Vertex d, =37
Vertex dg =38
Vertex dg =39

Vertex do = 40
Vertex d,; =41
Vertex d{, = 42
Vertex d;3 =43
Vertex d,4 = 44
Vertex dy5 = 45
Vertex dyq = 46

If WI[i,jl > WIi, k] + Wlk,j], then replace W[i,j] with W[i,k] + Wk, j]. Z[i,j] is also replace for Z[i, k]. The
following is the result of a matrix with only Wi, j]] replace for W[i, k] + W|k,j] and Z[i,j] replace for Z[i, k],

where Wi, j] = W[j,i] or vice versa.

Iteration 1:

W[2,17] = 40 W[2,31] = 56
Z[2,17],2[2,31],Z[17,31] = Z[i,1] = 1
Iteration 2:

W[1,3] = 22 W[3,17] = 43

In the matrix Z, replace Z[i, j]] with Z[i, 2] = 2.
Iteration 3:

W[1,4] = 25 W[2,4] =6

In the matrix Z5 replace Z[i, j] with Z[i, 3] = 3.
Iteration 4:

W[1,5] = 28 W[2,5] =9

w[5,31] = 65

In the matrix Z, replace Z[i, j] with Z[i, 4] = 4.
Iteration 5:

W[1,6] = 31 w[2,6] = 12

w[6,17] = 52 w[6,31] = 68

In the matrix Zs replace Z[i, j] with Z[i,5] = 5.
Iteration 6:

W[1,7] = 34 W[2,7] = 15

wWI[5,7] = 6 W|[7,17] = 55

In the matrix Zg replace Z[i, j] with Z[i, 6] = 6.
Iteration 7:

w[1,8] = 37 w[2,8] = 18

wI[5,8] =9 wl[68] =6

In the matrix Z, replace Z[i, j] with Z[i, 7] = 7.
Iteration 8:

W[1,9] = 40 w[2,9] = 21

wWI[5,9] = 12 w[6,9] =9

w[9,31] = 77

W[17,31] = 58

W[3,31] = 59

W[4,17] = 46

WI[3,5] = 6

W[3,6] =9

W[4,31] = 62

W[5,17] = 49

W[4,6] =6

W[4,7] =9

Ww[4,8] = 12

w[8,31] = 74

W[4,9] = 15
w[9,17] = 61

Suyudi et al. / International Journal of Global Operations Research, Vol. 3, No. 3, pp. 86-95, 2022

In the matrix Zg replace Z[i, j] with Z[i, 8] = 8.

Iteration 9:

W[1,10] = 43 W[2,10] = 24 W[3,10] = 21

W[5,10] = 15 w[6,10] = 12 W[7,10] =9

W[10,17] = 64 W[10,31] = 80

In the matrix Z, replace Z[i, j] with Z[i,9] = 9.

Iteration 10:

W[1,11] = 46 WI[2,11] = 27 W[3,11] = 24

w[5,11] = 18 w[e6,11] = 15 w[7,11] = 12

w[9,11] =6 W[11,17] = 67 W[11,31] = 83

In the matrix Z,, replace Z[i, j] with Z[i, 10] = 10.

Iteration 11:

W[1,12] = 49 W[2,12] = 30 WI[3,12] = 27

w[5,12] = 21 w[e6,12] = 18 W[7,12] = 15

w[9,12] =9 w[10,11] =6 W[12,17] =70

In the matrix Z;, replace Z[i,j] with Z[i,11] = 11.

Iteration 12:

W([1,13] =52 W[2,13] = 33 W[3,13] = 30

W[5,13] = 24 w[e6,13] = 21 w[7,13] = 18

w[9,13] = 12 W[10,13] =9 W[11,13] =6

W[13,31] =89

In the matrix Z,, replace Z[i, j] with Z[i, 12] = 12.

Iteration 13:

W[1,14] = 55 W[2,14] = 36 W[3,14] = 33

W(5,14] = 27 wl[6,14] = 24 W[7,14] = 21

w[9,14] = 15 W[10,14] = 12 W[11,14] =9

W[14,17] = 76 W[14,31] = 92

In the matrix Z, 5 replace Z[i, j] with Z[i, 13] = 13.

Iteration 14:

W[1,15] = 58 W[2,15] = 39 W[3,15] = 36

W|[5,15] = 30 w(e6,15] = 27 W[7,15] = 24

w[9,15] = 18 W[10,15] = 15 W[11,15] = 12

W[13,15] = W[15,17] = 79 W[15,31] = 95

In the matrix Z4 replace Z[i, j] with Z[i, 14] = 14.

Iteration 15:

wWi1,16] = 61 W(2,16] = 42 W(3,16] = 39

W[5,16] = 33 wie,16] = 30 w(7,16] = 27

w[9,16] = 21 W[10,16] = 18 w[11,16] = 15

W[13,16] =9 W[14,16] = W[16,17] = 82

In the matrix Z, 5 replace Z[i, j] with Z[l 15] = 15.

Iteration 46:

W[2,42] = 83 W[2,43] = 80 W[2,44] = 77
W[3,41] = 83 W[3,42] = 80 wW(3,43] =77

W([3,45] = 71 W[4,40] = 83 W[4,41] = 80

W[4,43] = 74 W[4,44] = 71 W[4,45] = 68

W[5,40] = 80 w[5,41] = 77 W[5,42] = 74

W[5,44] = 68 W[5,45] = 65 W[6,30] = 86

w[6,39] = 80 W[6,40] = 77 W[6,41] = 74

W[6,43] = 68 W[6,44] = 65 W[6,45] = 62

W[4,10] = 18
w[8,10] = 6
w[4,11] = 21
w[8,11] =9
W[4,12] = 24
w[8,12] = 12
w[12,31] = 86
W[4,13] = 27
w[8,13] = 15
W[13,17] = 73
W[4,14] = 30
w[8,14] = 18
w[12,14] = 6
W[4,15] = 33
w[8,15] = 21
W[12,15] = 9
W[4,16] = 36
w[8,16] = 24
w[12,16] = 12
W[16,31] = 98
W[2,45] = 74
W[3,44] = 74
w[4,42] = 77
W[5,39] = 83
W[s5,43] = 71
w[6,38] = 83
w[6,42] = 71
W([7,29] = 86

Ww[7,30] = 83
W[7,40] = 74
W[7,44] = 62
W[8,30] = 80
w[8,39] = 74
W[8,43] = 62
w[9,28] = 83
Ww[9,36] = 80
W[9,40] = 68
W[9,44] = 56
W[10,28] = 80
W[10,35] = 80
W[10,39] = 68
W[10,43] = 56
W[11,26] = 83
Ww[11,30] = 71
W[11,36] = 74
W[11,40] = 62
W[11,44] = 50
W[12,26] = 80
W[12,30] = 68
W[12,35] = 74
W[12,39] = 62
W[12,43] = 50
W[13,24] = 83
w[13,28] = 71
W[13,32] = 80
W[13,36] = 68
W[13,40] = 56
W[13,44] = 44
W[14,24] = 80
W[14,28] = 68
W[14,32] = 77
W[14,36] = 65
W[14,40] = 53
W[14,44] =
W[15,23] = 80
W[15,27] = 68
Ww[15,31] = 77
W[15,35] = 65
W[15,39] = 53
W[15,43] = 41
Ww[16,21] = 83
W[16,25] = 71
W[16,29] = 59
W[16,33] = 68
W[16,37] = 56
W[16,41] = 44
W[16,45] = 32
W[17,43] = 75
W[18,40] = 81
W[18,44] = 69
W[19,40] = 78
W[19,44] = 66
W[20,39] = 78
W[20,43] = 66
Ww[21,37] = 81

w([7,37] = 83
w[7,41] = 71
W[7,45] = 59
W[8,36] = 83
w[8,40] = 71
W[8,44] = 59
W[9,29] = 80
w[9,37] = 77
W[9,41] = 65
W[9,45] = 53
W[10,29] = 77
W[10,36] = 77
W[10,40] = 65
W[10,44] = 53
W[11,27] = 80
W[11,33] = 83
W[11,37] = 71
W[11,41] = 59
W[11,45] = 47
W[12,27] = 77
W[12,32] = 83
w[12,36] = 71
W[12,40] = 59
W[12,44] = 47
W[13,25] = 80
W[13,29] = 68
W[13,33] = 77
W[13,37] = 65
W[13,41] = 53
W[13,45] =
W[14,25] = 77
W[14,29] = 65
W[14,33] = 74
W[14,37] = 62
W[14,41] = 50
W[14,45] = 38
W[15,24] = 77
W[15,28] = 65
W[15,32] = 74
W[15,36] = 62
W[15,40] = 50
W[15,44] = 38
W[16,22] = 80
W[16,26] = 68
W[16,30] = 56
W[16,34] = 65
W[16,38] = 53
W[16,42] = 41
W[17,40] = 84
W[17,44] = 72
w[18,41] = 78
W[18,45] = 66
w[19,41] = 75
W[19,45] = 63
W[20,40] = 75
W[20,44] = 63
W[21,38] = 78

w[7,38] = 80

W[7,42] = 68

W[8,28] = 86

W[8,37] = 80

w[8,41] = 68

W[8,45] = 56

w[9,30] = 77

w[9,38] = 74

W[9,42] = 62

W[10,26] = 86
W[10,30] = 74
W[10,37] = 74
W[10,41] = 62
W[10,45] = 50
W[11,28] = 77
W[11,34] = 80
W[11,38] = 68
W[11,42] = 56
W[12,24] = 86
W[12,28] = 74
W[12,33] = 80
W[12,37] = 68
W[12,41] = 56
W[12,45] = 44
W[13,26] = 77
W[13,30] = 65
W[13,34] = 74
W[13,38] = 62
W[13,42] = 50
W[14,22] = 86
W[14,26] = 74
W[14,30] = 62
W[14,34] = 71
W[14,38] = 59
W[14,42] = 47
W[15,21] = 86
W[15,25] = 74
W[15,29] = 62
W[15,33] = 71
W[15,37] = 59
W[15,41] = 47
W[15,45] = 35
W[16,23] = 77
W[16,27] = 65
W[16,31] = 74
W[16,35] = 62
W[16,39] = 50
W[16,43] = 38
W[17,41] = 81
W[17,45] = 69
w[18,42] = 75
W[19,38] = 84
W[19,42] = 72
W[20,37] = 84
w[20,41] = 72
W[20,45] = 60
W[21,39] = 75

Suyudi et al. / International Journal of Global Operations Research, Vol. 3, No. 3, pp. 86-95, 2022

w[7,39] = 77
W[7,43] = 65
W[8,29] = 83
w[8,38] = 77
W[8,42] = 65
W[9,27] = 86
Ww[9,35] = 83
w[9,39] = 71
W[9,43] = 59
Ww[10,27] = 83
W[10,34] = 83
w[10,38] = 71
W[10,42] = 59
W[11,25] = 86
W[11,29] = 74
W[11,35] = 77
W[11,39] = 65
W[11,43] = 53
W[12,25] = 83
W[12,29] = 71
W[12,34] = 77
W[12,38] = 65
W[12,42] = 53
W[13,23] = 86
W[13,27] = 74
Ww[13,31] = 83
W[13,35] = 71
W[13,39] = 59
W[13,43] =
W[14,23] = 83
w[14,27] = 71
W[14,31] = 80
W[14,35] = 68
W[14,39] = 56
W[14,43] = 44
W[15,22] = 83
W[15,26] = 71
W[15,30] = 59
W[15,34] = 68
W[15,38] = 56
W[15,42] = 44
W[16,20] = 86
W[16,24] = 74
W[16,28] = 62
W[16,32] = 71
W[16,36] = 59
W[16,40] =
W[16,44] = 35
W[17,42] = 78
W[18,39] = 84
W[18,43] = 72
W[19,39] = 81
W[19,43] = 69
W[20,38] = 81
W[20,42] = 69
W[21,36] = 84
W[21,40] = 72

91

Suyudi et al. / International Journal of Global Operations Research, Vol. 3, No. 3, pp. 86-95, 2022

W[21,41] = 69 W[21,42] = 66 W[21,43] = 63 W[21,44] = 60
W[21,45] = 57 W[22,35] = 84 W[22,36] = 81 W[22,37] = 78
W[22,38] = 75 W[22,39] = 72 W[22,40] = 69 W[22,41] = 66
W[22,42] = 63 W[22,43] = 60 W[22,44] = 57 W[22,45] = 54
W[23,34] = 84 W[23,35] = 81 W[23,36] = 78 Ww[23,37] = 75
W[23,38] = 72 W[23,39] = 68 W[23,40] = 66 W[23,41] = 63
W[23,42] = 60 W[23,43] = 57 W[23,44] = 54 W[23,45] = 51
W[24,33] = 84 W[24,34] = 81 W[24,35] = 78 W[24,36] = 75
W[24,37] = 72 W[24,38] = 69 W[24,39] = 66 W[24,40] = 63
W[24,41] = 60 W[24,42] = 57 W[24,43] = 54 W[24,44] = 51
W[24,45] = W[25,32] = 84 W[25,33] = 81 W[25,34] = 78
W[25,35] = 75 W[25,36] = 72 W[25,37] = 68 W[25,38] = 66
W[25,39] = 63 W[25,40] = 60 W[25,41] = 57 W[25,42] = 54
W[25,43] = 51 W[25,44] = 48 W[25,45] = W[26,31] = 84
W[26,32] = 81 W[26,33] = 78 W[26,34] = 75 W[26,35] = 72
W[26,36] = 69 W[26,37] = 66 W[26,38] = 63 W[26,39] = 60
W[26,40] = 57 W[26,41] = 54 W[26,42] = 51 W[26,43] =
W[26,44] = W[26,45] = 42 w[27,31] = 81 W[27,32] = 78
W[27,33] = 75 W[27,34] = 72 W[27,35] = 69 W[27,36] = 66
W[27,37] = 63 W[27,38] = 60 W[27,39] = 57 W[27,40] = 54
W[27,41] = 51 W[27,42] = 48 W[27,43] = W[27,44] =
W[27,45] = 39 w[28,31] = 78 w[28,32] = 75 w[28,33] = 72
W[28,34] = 69 W[28,35] = 66 W[28,36] = 63 w[28,37] = 60
Ww[28,38] = 57 W[28,39] = 54 W[28,40] = 51 w[28,41] =
w[28,42] = W[28,43] = 42 W[28,44] = 39 W[28,45] = 36
W[29,31] = 75 W[29,32] = 72 W[29,33] = 69 W[29,34] = 66
W[29,35] = 63 W[29,36] = 60 W[29,37] = 57 W[29,38] = 54
W[29,39] = 51 W[29,40] = 48 W[29,41] = W[29,42] =
W[29,43] = 39 W[29,44] = 36 W[29,45] = 33 W[30,31] = 72
W[30,32] = 69 W[30,33] = 66 W[30,34] = 63 W[30,35] = 60
W[30,36] = 57 W[30,37] = 54 W[30,38] = 51 W[30,39] =
W[30,40] = W[30,41] = 42 W[30,42] = 39 W[30,43] = 36
W[30,44] = 33 W[30,45] = 30

In the matrix Z,¢ replace Z[i, jlwith Z[i, 46] = 46.
The following is the form of the W, matrix from iteration 46 along with the Z,, matrix, complete in Table 2 and 3.
Table 2. Matrix W, from 46 iteration

ij 1 2 3 4 5 6 71 8 9 3 . 42 43 44 45 46
1 0 19 22 25 28 31 34 37 40 43 .. 790 73 76 79 82
2 19 0 3 6 9 12 15 18 21 24 - 8 8 78 75 72
3 2 3 0 3 6 9 12 15 18 21 -~ 8 78 75 72 69
4 2 6 3 0 3 6 9 12 15 18 - 78 75 72 69 66
5 28 9 6 3 0 3 6 9 12 15 =~ 75 72 69 66 63
6 31 12 9 6 3 0 3 6 9 12 - T2 69 66 63 60
7 34 15 12 9 6 3 0 3 6 9 69 66 63 60 57
8 37 18 15 12 9 6 3 0 3 6 66 63 60 57 54
9 40 21 18 15 12 9 6 3 0O 3 -~ 63 60 57 54 51
10 43 24 21 18 15 12 9 6 3 0 60 57 54 51 48
42 70 81 78 75 72 69 66 63 60 57 0 3 6 9 12
43 73 78 75 72 69 66 63 60 57 54 - 3 0 3 6 9
44 76 75 72 69 66 63 60 57 54 51 6 3 0 3 6
45 79 72 69 66 63 60 57 54 51 48 9 6 3 0 3
46 82 69 66 63 60 57 54 51 48 45 - 12 9 6 3 0

Suyudi et al. / International Journal of Global Operations Research, Vol. 3, No. 3, pp. 86-95, 2022

93

Table 3. Matrix Z,, from 46 iteration

ij 1 2 3 4 5 6 7 8 9 3 42 43 44 45 46
1 12 2 3 4 5 6 78 9 41 42 43 44 45
2 1 2 3 3 4 5 6 7 8 9 46 46 46 46 16
3 2 2 3 4 4 5 6 7 8 9 46 46 46 46 16
4 3 8 3 4 5 5 6 7 8 39 46 46 46 46 16
5 4 4 4 4 5 6 6 7 8 9 46 46 46 46 16
6 5 ° ° 5 5 6 7 7 8 9 46 46 46 46 16
7 6 6 6 6 6 6 7 8 8 9 46 46 46 46 16
g 7 (7 7 7 7 7 8 9 9 46 46 46 46 16
9 g 8 8 8 8 8 8 8 9 10 46 46 46 46 16
0 9 9 9 9 9 9 9 9 9 10 46 46 46 46 16
42 41 46 46 46 46 46 46 46 46 46 42 43 43 44 45
43 42 46 46 46 46 46 46 46 46 46 42 43 44 44 45
44 43 46 46 46 46 46 46 46 46 46 43 43 44 45 45
45 44 46 46 46 46 46 46 46 46 46 44 44 44 45 46
46 45 16 16 16 16 16 16 16 16 16 45 45 45 45 46

To check whether the final result of the Floyd-Warshall algorithm is manually correct, Python is used to get all the
possible shortest paths from the entrance a; to the parking lot b; to d44, the syntax used is as follows (Bhavya, 2022)

INF = 9999

Utility function to print solution

W range

def printSolution (sumvertex, W):
for i in range (sumvertex) :

for j in range (sumvertex) :

if (Wil (3]

select all vertices as origin one by one

print ("%7s"

else:

== INF):

% ("INF"),end="

print ("$1d\t" %
print (" ")

def floydWarshall (sumvertex, W) :
for k in range(Select all vertices as targets for selected origin):

(W[i1[J]),end="'

for i in range (sumvertex) :

Select all vertices as targets for selected origin

for j in range (sumvertex) :

If vertex k is on the shortest path from i to 7,

the value of W[i][]]

W[i] [J]
W[il (3],

= min (

printSolution (sumvertex, W)
W = [# the contents of the cells in the matrix WO]
floydWarshall (46,

After the program is run it will get the same results as in Table 4.

W)

")

W[i] [k]+W (k] [J])

")

then update

The following table shows the shortest distance from the a; entrance to each parking lot with the shortest path.

Table 4. Results of the Shortest Distance and Path

Origin Target Distance(meters) Path (a4, ...)
a, b, 19 b,
a; b, 22 by, b,

Suyudi et al. / International Journal of Global Operations Research, Vol. 3, No. 3, pp. 86-95, 2022 94

a, bs 25 by, by, by

a, b, 28 by, by, b3, by

a, b 31 by, by, b3, by, by

a, bg 34 by, by, bs, by, bs, b

a, b, 37 by, by, bs, by, bs, bg, by

a, bg 40 by, by, bs, by, bs, bg, by, bg

a, b 43 by, by, b3, by, bs, bg, by, bg, by

a; b10 46 b11b2ﬂb3!b4—! b51b6! b7!b8!b9! blO

a, b4 49 by, by, b3, by, bs, be, by, bg, bg, byg, b11

a, b, 52 by, by, b3, by, bs, bg, by, bg, by, b1, by1, b1z

a, b3 55 by, by, b3, by, bs, be, by, bg, bg, by, b11, b12, b1z
a; b14- 58 blvb2ib3'b4!b5!b6!b7! b8!b9! blO! b111b12!b131b14
a b15 61 b1'b2vb3vb4—' b51b6!b7!b8!b9! blO!b11!b12!b13!b14! b15
a, C1 21 ¢

aq C2 24 €1, C2

a C3 27 €1,C2,€C3

a, Cs 30 €1,€2,C3,C4

a, Cs 33 C1,C2,C3,Cy,Cs

a; Ce 36 €1, C3, C3,C4, Cs, Cg

a; cy 39 €1, €2, C3,C4, Cs, Co, C7

aq Cg 42 €1, €2, €3, €4, Cs, Cg, €7, Cg

a, Cy 45 C1, €2, C3,Cy, Cs5, Cq, €7, Cg, Cg

a, C10 48 €1, €2, €3, (4, C5, Cg, €7, Cg, Cg, C19

a, C11 51 €1, €2, €3, €4, C5, Cg, C7, Cg, Cg, €10, C11

a, C12 54 €1, €2, €3, €y, Cs, Cg, C7, Cg, €9, C10, €11, C12

a; C13 57 €1, €2, C3, €y, Cs, Ce, €7, Cg, Co, €10, €11, C12, €13

a; C14 60 €1, €2, €3, €y, Cs, Ce, €7, Cg, Co, €10, C11, C12, €13, C14
a, d, 37 d,

a d, 40 dy, d;

a; ds 43 dy,dy, d3

a; dy 46 di,d;, ds, dy

aq ds 49 dy,dy, d3, dy, ds

aq de 52 dy, dy, d3, dy, ds, dg

a, d, 55 dy,dy, ds, dy, ds,dg, d

a, dg 58 dy,d,, ds,dy, ds,dg,d, dg

a, dg 61 dy,d,, ds,dy, ds,dg, d7,dg, dg

a; le 64 dl'd2td31d4l d5,d6, d7,d8, d9l le

a; dll 67 dl'd2td31d4-l d51d6t d7,d3, d9l leldll

aq di, 70 dy, dy, d3, dy, ds, dg, d7, dg, do, dy, dy1, dy2
aq di3 73 dy,dy, d3, dy, ds, dg, d7, dg, dg, dyg, d11, d12,d13
aq dig 76 dy,dy, d3, dy, ds, dg, d7, dg, dg, dyg, d11, d12,d13, d1g
a; dlS 79 d11d21d3'd4' d51d6l d7,d3, d9t d10; d111d12ld13'd14! d15
aq d16 82 d11d21d3'd4' d5,d6,d7,d8,d9, d10; dllt d121d13'd14' d15! d16

4. Conclussion

The use of the Floyd-Warshall Algorithm is more effective in determining the shortest path in the parking layout,
because it gets the shortest distance that is more accurate and calculates all the shortest distances at the vertex and
knows all the paths traversed by the shortest distance from the origin vertex to the target vertex. So as to get the
shortest distance from the parking entrance (a,) to all parking lots from (b;) to (d;¢). From the entrance (a;) to the
parking lot (b;) is the shortest distance of all parking lots with a length of 19.

References

Azis, H., Mallongi, R., Lantara, D., & Salim, Y. (2018). Comparison of Floyd-Warshall Algorithm and Greedy Algorithm in

Determining the Shortest Route. 2018 2nd East Indonesia Conference on Computer and Information Technology

(EICoNCIT), 294-298.

Suyudi et al. / International Journal of Global Operations Research, Vol. 3, No. 3, pp. 86-95, 2022 95

Bhavya. (2022). All Pair Shortest Path Problem in Python. Retrieved June 15, 2022, from https://pythonwife.com/all -pair-
shortest-path-problem-in-python/

Fatmala, F., Yudatama, U., & Burhanuddin, A. (2019). Panduan Jalur Angkutan Umum Menggunakan Algoritma Floyd Warshall.
Jurnal Komtika (Komputasi Dan Informatika), 3, 1-9. https://doi.org/https://doi.org/10.31603/komtika.v3i1.3462

Fortuna, C., Sandra, K., Sipil, J. T., & Trisakti, U. (2020). Kebijakan Strategi Parkir (Studi Kasus : Ibu Kota Metropolitan Jakarta)
Parking Strategy Policy (Case Study : Metropolitan Jakarta), (September), 103—108.

Jayanti, N. K. D. A. (2017). Penggunaan Algoritma Floyd Warshall Dalam Masalah Jalur Terpendek Pada Penentuan Tata Letak
Parkir. In Seminar Nasional Informatika (SNIf), 1, 75-81.

Kumar, R.., & Kumar, M. (2010). Exploring Genetic Algorithm for Shortest Path Optimization in Data Networks, 10(11), 8-12.

Ramadhan, Z., Siahaan, A. P. U., & Mesran, M. (2018). Prim and Floyd-Warshall Comparative Algorithms in Shortest Path
Problem, 47-58.

Rosen, K. H. (2012). Discrete Mathematics and Its Discrete and Its Seventh Edition.

Vasudev, C. (2006). Graph theory with applications. New Age International.

