

Available online at http://www.iorajournal.org/index.php/ijgor/index

International Journal of Global Operations

Research

Vol. 3, No. 3, pp. 108-115, 2022

e-ISSN: 2722-1016

p-ISSN: 2723-1739

Comparative Analysis of the Speed of the Sorting Method on Google

Translate Indonesian-English Using Binary Search

Maria Atik Sunarti Ekowati
1,*

, Zefanya Permata Nindyatama
2
, Widianto

3
, Kristyanan Dananti4

1
Informatics Engineering Study Program, Faculty of Engineering, Surakarta Christian University, Central Java, Indonesia

2
Communication Studies Program, Social and Political Sciences, Sebelas Maret University, Surakarta, Central Java, Indonesia
3
Environmental Engineering Study Program, Faculty of Engineering, Surakarta Christian University, Central Java, Indonesia

4
Management Study Program, Faculty of Economics, Surakarta Christian University, Central Java, Indonesia

*Corresponding author email: maria.atik@uks.ac.id; maria.atik@gmail.com

Abstract

In Indonesia, English is a compulsory subject for students. This course is an uninteresting subject and tends to be difficult for

students to understand. Meanwhile, on the other hand, international issues are often discussed, namely English which is Students

must know and be fluent in reading, writing and communication. The basic idea of research objectives, comparing the sorting

process using two different algorithms, namely bubble sort and Merge Sort. The basic model of the research method Comparative

Analysis of the Speed of the Shorting Method on Google Translate Indonesian-English Using Binary Search. Sorting, Sorted

(ordered according to certain rules/rules), and the data is presented in sorted form, as said in dictionaries, and files in a directory.

The algorithm used for sorting is bubble sort, which is an element comparison operation that is exchanged for other elements until

the end of the data series is reached, until no more elements are swapped. Results for find out how well the performance speed of

the bubble sort algorithm is in sorting data.

Keywords: Algorithm, Binary Search, Sorting, Bubble Sort, Merge Sort.

1. Introduction

Dictionaries play an important role in language learning because they can increase knowledge of vocabulary. The
use of a dictionary may be minimal when there is homework to translate, but it is important when reading, writing and
communicating. In this study, the author presents the title: "Comparative Analysis of the Speed of the Shorting
Method on Google Translate Indonesian-English Using Binary Search". Technological advances have had an impact
on the development of data. Data becomes bigger and more varied. As the amount of data increases, data processing
becomes more complex. Before processing the data, there are processes that are carried out including sorting.
Comparative Analysis of the Speed of the Shorting Method on Google Translate Indonesian-English Using Binary
Search has its own advantages and disadvantages depending on the amount of data. Binary Search is a data search
technique and must be sorted first using sorting techniques such as Bubble Sort, Quick Sort, Merge Sort, Insertion
Sort, and Selection Sort. So that in the Comparative Analysis of the Speed of the Shorting Method on Google
Translate Indonesian-English Using Binary Search, it will always relate to the Quick Sort, Merge Sort, Insertion Sort,
Bubble Sort and Selection Sor algorithms. An algorithm that has the advantage of sorting large amounts of data. The
Insertion Sort, Bubble Sort and Selection Sort algorithms have the advantage of sorting small amounts of data. Quick
Sort and Merge Sort use the divide and conquer concept, namely by dividing the data into sub-sections and then
dividing it again until the smallest parts are then sorted by small sub-sections. In the process of sorting these small
subsections, they will be replaced by using the Bubble Sort, Insertion Sort, and Selection Sort algorithms. In this
study, comparisons were made to the Merge Sort algorithm with Insertion Sort. The result of this research is that for
data with less than 100 data, Insertion Sort is a faster algorithm than Merge Sort. However, for the amount of data
more than 100, the Merge Sort algorithm is faster. In this study, comparisons were also made to the Merge Sort and
Insertion Sort algorithms, but the difference was the amount of data used in the experiment. The results showed that
Merge Sort was faster than Insertion Sort for large amounts of data. Comparisons were made to the Quick Sort and
Insertion Sort algorithms, with the amount of data less than 100. Insertion Sort is a faster algorithm than Quick Sort.
However, for the amount of data more than 100, the Quick Sort algorithm is faster. compared five algorithms, namely
Quick Sort, Merge Sort, Selection Sort, Bubble Sort and Insertion Sort. The results of the research Quick Sort is a fast

mailto:maria.atik@uks.ac.id
mailto:maria.atik@gmail.com

Ekowati et al. / International Journal of Global Operations Research, Vol. 3, No. 3, pp. 108-115, 2022 109

algorithm if the data used is 1000 but if the data is only 100 then Insertion Sort is a fast algorithm. Comparison made
to five algorithms Bubble Sort, Selection Sort, Insertion Sort, Merge Sort and Quick Sort. The results of the Quick
Sort research is the fastest algorithm. For small-scale data, Insertion Sort and Selection Sort are used. For data that has
certain patterns and rules, Bubble Sort and Insertion Sort are used. For large-scale Quick Sort and Merge Sort data
used, six algorithms are compared, namely Selection Sort, Insertion Sort, Merge Sort, Quick Sort, Bubble Sort and
Comparison Sort. Bubble Sort and Quick Sort are the fastest algorithms (Hibbler, 2015; Sonita and Nurtaneo, 2015;
Karve, 2016).

Various studies were conducted to increase the speed of the sorting algorithm, such as by optimizing Bubble Sort
and Selection Sort. Optimization is done by reducing the number of data exchanges that occur during the sorting
process. To increase the speed of the Bubble Sort and Selection Sort algorithms, optimization is done by avoiding the
process of comparing data with other data during the sorting process, then optimization 1 on the Insertion Sort
algorithm. Optimization is done by reducing the search for the right data position and reducing the process of
exchanging data to the right position (Kumalasari, 2017; Tambunan, 2018). Quick Sort and Merge Sort algorithms are
combined with Insertion Sort. The results of this study indicate that the results of the merger have a faster time.
Merge-Insertion Sort is faster than Merge Sort. Quick-Insertion Sort is also faster than Quick Sort (Sitepu, 2017;
Rachmat, 2018). The research carried out aims to obtain Comparative Analysis of the Speed of the Shorting Method
on Google Translate Indonesian-English Using Binary Search which has a faster time in sorting data. The resulting
algorithm has a faster time than with the usual algorithm (Horman, et al, 2016; Drodek, 2017; Rheinadi, 2019). This
study uses another algorithm, namely Bubble Sort and Selection Sort for sorting data on a small scale can use
Insertion Sort, Bubble Sort and Selection Sort so that Bubble Sort and Selection Sort can be a comparison for random
data types so they need to be measured against other types of data such as reverse ordered and almost ordered. By
doing this research, it is possible to add an algorithm that can be an alternative choice that can be adapted to the type
of data such as random data, reverse ordered data and almost ordered data.

2. Methodology

The method that became the basic idea of the research is Comparative Analysis of the Speed of the Shorting
Method on Google Translate Indonesian-English using Binary Search, which is to compare the sorting of algorithms
and the process of combining algorithms that are often used in binary seats. The merging process is done by entering
additional algorithms into the main algorithm. The main algorithm data is divided into small parts. It is in this small
part that additional algorithms are used to sort the data. In order to distinguish when to use the main algorithm and
when to use an additional algorithm, a limit value is needed.

If these small parts have a lot of data that is still above the limit value, then the main algorithm is used, but if it is
smaller than the limit value, an additional algorithm is used. The main algorithms used are Merge Sort and Quick
Sort. Additional algorithms are Insertion Sort, Bubble Sort and Selection Sort. By combining the main and additional
algorithms, 6 candidates will be tested, namely, Merge-Insertion Sort (MIS), Merge-Bubble Sort (MBS), Merge-
Selection Sort (MSS), Quick-Insertion Sort (QIS), Quick-Insertion Sort (QIS), Quick-Insertion Sort (QIS), and Quick-
Insertion Sort. Bubble Sort (QSS) and Quick-Selection Sort (QSS). Six samples will be tested with 5 variants of the
amount of data, namely 100, 1000, 10000, 100000 and 1000000 data words in the dictionary / google translate. The
boundary value as a determinant between the main algorithm and additional algorithms is also used in the test. The
limit value is the value used to determine when to use the main algorithm and additional algorithms. When the size of
the data shared by the main algorithm is more than the limit value, the main algorithm is used, but if the data size is
less than the limit, an additional algorithm is used. The limit values used are 8, 16, 32 and 64. There are 3 types of
data tested, namely random, reverse-ordered and almost ordered. When testing, there will be changes to the main
algorithm as well as additional algorithms, namely changes in determining the size and value of the data limit
(Bingheng, 2018). Algorithm 1 below is an additional form of algorithm that has changed.

2.1. Insertion Sort

Algorithm 1. Modified form of Insertion Sort Algorithm

public void insertionSort(int A[],

int p, int r){

int key;

int i;

for(int j = p + 1 ; j <= r; j++){

key = A[j];

i = j;

while(i>p&& A[i-1] >= key){

A[i] = A[i-1];

--i;}

A[i] = key;}}

Ekowati et al. / International Journal of Global Operations Research, Vol. 3, No. 3, pp. 108-115, 2022 110

In this algorithm 1, the Insertion Sort algorithm has been modified. The form of changing the algorithm with the

previous one is to add the values of p and r, each of which is an index that shows the beginning and end of a data. The

p value is used to indicate the initial index of the data to be sorted. The value of r is used to designate the final index

of the sorted data. The Insertion Sort algorithm is used when the size of the data resulting from the Quick Sort or

Merge Sort division is below the limit value.

2.2. Bubble Sort

Algorithm 2. Modified form of Bubble Sort Algorithm

In algorithm 2, the above is a modified Bubble Sort algorithm, changes to the Bubble Sort algorithm by adding p

and r values, where p and r values are the initial and final indexes of the data section, the division results obtained at
the time of Merge Sort division and Quick Sort. If the length of the data section is less than the limit value, the Bubble
Sort algorithm is used to sort the data section.

2.3. Selection Sort

Algorithm 3. The modified form of the Selection Sort Algorithm

We know that in algorithm 3. is a modified Selection Sort algorithm. The form of changing the Selection Sort
algorithm is to add p and r values. While the values of p and r are the initial and final indices of the data obtained
from the results of the division of Merge Sort and Quick Sort. If the length of the data section is less than the limit
value, the Selection Sort algorithm is used to sort the data section

4.4. Merge Sort

Below is the main Merge Sort algorithm that changes when it is used to sort parts of the data.

public void bubbleSort(int A[], int

p, int r){

 int temp = 0;

 for(int i=p;i<r;i++){

for(int j=p+1;j<(r+1);j++){

if(A[j-1] > A[j]){

temp = A[j-1];

A[j-1] = A[j];

A[j] = temp;

}

}

}

}

public void selectionSort(int A[],int

p,int r){

for(int i=p;i<r;i++){

int index = i;

for(int j= i+1;j<r+1;j++){

if(A[j] < A[index]){

index = j;

}

}

int smallerNumber = A[index];

A[index] = A[i];

A[i] = smallerNumber;

}

}

Ekowati et al. / International Journal of Global Operations Research, Vol. 3, No. 3, pp. 108-115, 2022 111

Algorithm 4. Modified Merge Sort Algorithm

Merge Sort Algorithm form that has been modified, the algorithm 4 is done by adding conditions. If the data size is

greater than the limit, then Merge Sort is carried out as usual. If the data size is less than the limit, then sorting is done

using Insertion Sort, Bubble Sort or Selection Sort. The values of p and r are used to indicate the start and end of the

data

2.5. Quick Sort

The Quick Sort algorithm is the same as the Merge Sort algorithm, changes are made by adding conditions. If the

data size is greater than the limit, then sorting is done using the usual Quick Sort. However, if the data size is smaller

then the sorting is done by Insertion Sort, Bubble Sort or Selection Sort. Algorithm 10 shows the modified Quick Sort

algorithm. All data used in this experiment were obtained from randomization. In this experiment, the randomized

numbers are numbers with one occurrence. Data randomization activities are carried out using a generator program.

The thing to do before measuring the sequencing time is to run the generator program first. The randomized data is

stored in a file so that the comparisons are fair. In order to fulfill the type of data in reverse order, the random data

stored will be sorted in reverse and then stored in a file using a program. In order to meet the types of data that are

almost sorted, we also use the program, but not all data is sorted by the process. As with other types of data, quick sort

is the same, that is, the types are almost sorted and stored in files. For example, the experiment was carried out with

the IDE used, namely Netbeans 8 with JDK 8. And using an Intel Core i7-10700T processor, LGA 1151 socket,

4C/8T, 16 MB cache, 4.50 GHz Turbo Max frequency, 8 GB RAM and T- Power-Optimized lifestyle, 10th

Generation. Below is the main Quick Sort algorithm that changes/modifies when it is used to sort parts of the data.

Algorithm 5. Modified Quick Sort Algorithm

public void mergeSort(int A[], int

p, int r){

if (p < r){

if((r - p + 1) > batas){

int q = (p+r)/2;

mergeSort(A, p, q);

mergeSort(A,q+1, r);

merge(A, p, q, r);

}

Else {

//insertionSort(A,p,r);

//bubbleSort(A, p, r);

//selectionSort(A, p,r);

}

}

}

public void quickSort(int A[],

int p, int r) {

if (p < r){

if((r - p + 1) > batas){

int q = partition(A, p, r);

quickSort(A, p, q - 1);

quickSort(A, q+1, r);

}

Else {

//insertionSort(A,p,r);

//bubbleSort(A, p, r);

//selectionSort(A,p,r);

}

}

}

Ekowati et al. / International Journal of Global Operations Research, Vol. 3, No. 3, pp. 108-115, 2022 112

3. Results and Discussion

3.1. Results

In this analysis and discussion, the results of the comparison of the algorithm used in the binary search method

carried out in the data sorting process in the form of words in a dictionary / google translate can be seen in Table 1

below:

Table 1. Comparison Of Speed Algorithm with Number 100 Words Data and Random Data Types (In Nanoseconds)

Algorithm used Limit

8 16 32 64

Merge Sort 127624 207342 131617 98362

Merge Insertion Sort 83292 49879 58752 82865

Merge Bubble Sort 73846 48695 78631 76628

Merge Selection Sort 68576 63884 62438 83820

Quick Sort 166194 166258 121190 116756

Quick Insertion Sort 176194 176521 117341 87641

Quick Bubble Sort 169779 243827 150535 164056

Quick Selection Sort 188923 241717 129908 176760

The time comparison of the main algorithm and the combined algorithm is shown in Table 1. What was done

during the comparison experiment of the algorithm used in the binary search method was to compare the algorithm

and the limit value to 100 random word data in the dictionary / google translate. The yellow-red part is the algorithm

that has the fastest time. From the table it can be concluded that the fastest algorithm in this experiment is Merge

Silection Sort (MSS) with a limit value of 16. From the table above, a graph is then made so that comparisons can be

seen easily. The graph is made according to the table that is comparing the candidate algorithms and limit values

against time.

Figure 1 shows the speed comparison for data size 100 and random data types. The algorithm that has the fastest

overall time is Merge-Insertion Sort with a limit value that gives the fastest time at 16 bits.

Figure 1. Comparison graph of the speed of the algorithm with the amount of data 100 words in the dictionary /

google translate with random data types.

Furthermore, the comparison experiment of the algorithm used in the binary search method is carried out by

comparing the algorithm and the limit value of 1000 random word data in the dictionary / google translate as Table 2

as follows:

Table 2. Comparison Of Speed Algorithm With Number 1000 Words Data And Random Data Types (In

Nanoseconds)

 Limit

Algorithm used 8 16 32 64

Merge Sort (MS) 960583 986535 944589 4974585

Merge Insertion Sort (MIS) 635923 568988 623948 2770774

Merge Bubble Sort (MBS) 762081 758087 1457019 3901065

Merge Selection Sort (MSS) 664575 639772 750533 1690518

Quick Sort (QS) 881396 869849 759087 1119172

Ekowati et al. / International Journal of Global Operations Research, Vol. 3, No. 3, pp. 108-115, 2022 113

Quick Insertion Sort (QIS) 911760 1044760 753955 1280398

Quick Bubble Sort (QBS) 883535 1170491 1247040 3319882

Quick Selection Sort (QSS) 771916 800142 972059 1558373

In Table 2. The above shows the comparison of the time of the main algorithm and the combined algorithm used in

the binary search method. The comparison is done by comparing the algorithm and the limit value of 1000 random

word data in the dictionary / google translate. The yellow-red part is the algorithm that has the fastest time. The fastest

algorithm is Merge Insertion Sort (MIS) with a limit value of 16. From the table above, a graph is then made so that

comparisons can be seen easily. The graph is made according to the table that is comparing the candidate algorithms

and limit values against time.

Figure 2 shows a comparison of speeds for 1000 data sizes and random data types. The algorithm that has the

fastest overall time is Merge-Insertion Sort with a limit value that gives the fastest time at 16 bits.

Figure 2. The graph of the comparison of the speed of the algorithm with the amount of data in 1000 words in the

dictionary / google translate with random data types.

The next experiment to compare the speed of the algorithm carried out on the binary search method is to compare

the algorithm for a data size of 100000 random word data in a dictionary / google translate. as table 3 as follows:

Table 3. Comparison Of Speed Algorithm with Number 10000 Data and Random Data Types (In nanoseconds)

 Limit

Algorithm used 8 16 32 64

Merge Sort (MS) 35678221 47607358 33434032 35165178

Merge Insertion Sort (MMIS) 31684425 44154903 41642433 33410938

Merge Bubble Sort (MBS) 34745006 4283755 53623175 39808223

Merge Selection Sort (MSS) 36057622 46392392 46733232 35829325

Quick Sort (QS) 37991119 37430891 32415786 20340105

Quick Insertion Sort (QIS) 29842589 30326266 27960909 23644164

Quick Bubble Sort (QBS) 25276949 34466818 39351916 37199958

Quick Selection Sort (QSS) 23405105 31983000 25785431 34086205

Figure 3. Comparison graph of the speed of the algorithm with the amount of data 10000 words in the dictionary /

google translate with random data types.

Ekowati et al. / International Journal of Global Operations Research, Vol. 3, No. 3, pp. 108-115, 2022 114

The next algorithm speed comparison experiment was carried out on the binary search method up to 15 times. By

comparing the algorithm for a data size of 1000000 types of words in a dictionary / google translate which are almost

in order, as shown in table 4. below:

Table 4. Comparison Of Speed Algorithm with Number 1000000 Data and Almost Ordered Data Types (In

nanoseconds)

 Limit

Algorithm used 8 16 32 64

Merge Sort (MS) 1.69E+08 2.12E+08 1.73E+08 1.73E+08

Merge Insertion Sort (MMIS) 1.06E+08 1.16E+08 8. 1.16E+08 9.13E+07

Merge Bubble Sort (MBS) 8.13E+07 1.39E+08 1.37E+08 1.61E+08

Merge Selection Sort (MSS) 1.11E+08 1.33E+11 1.14E+08 1.04E+08

Quick Sort (QS) 9.27E+10 1.31E+11 3.20E+11 2.33E+11

Quick Insertion Sort (QIS) 5.23E+11 3.20E+11 4.33E+11 5.33E+11

Quick Bubble Sort (QBS) 1.20E+11 2.33E+11 6.33E+11 8.31E+10

Quick Selection Sort (QSS) 7.31E+10 9.20E+11 6.31E+11 8.53E+11

In Table 4. shows the comparison of the time of the main algorithm and the combined algorithm. The comparison

is done by comparing the algorithm and the limit value of 1000000 types of words in the dictionary / google translate

which are almost ordered. The yellow-red part is the algorithm that has the fastest time. The fastest algorithm is

Merge-Bubble Sort (MBS) with a limit value of 8 bits. From the table above, a graph is then made so that the

comparison can be seen easily. The graph is made according to the table that is comparing the algorithm and the limit

value against time. Figure 4. shows the speed comparison for data size 1000000 and data type in reverse order. The

algorithm that has the fastest overall time is Merge-Bubble Sort (MBS), for the limit value that gives the fastest time

is 8 bits.

Figure 4. Comparison of the speed of the algorithm with the amount of data 1000000 types of words in the dictionary

/ google translate which are almost sorted

After the above experiments have been carried out, the comparison of the speed of the algorithm in the binary

search method can be concluded that in Table 5. it can be seen which algorithms have the fastest time for each data

size and data type, as shown in table 5. below this.

Table 5. Fastest Algorithm on Data Types and Data Size

 Data Type

 Random Ordered Reverse Almost Ordered

100 Merge Insertion Sort

(MIS, limit 16 bit

Merge Selection Sort

(MSS), limit 16 bit

Merge Bubble Sort

(MBS), limit 64 bit

1000 Merge Insertion Sort

(MIS), Limit 16

 Merge Selection Sort

(MSS), limit 16 bit

Merge Insertion Sort

(MMIS), limit 16 bit

10000 Merge Bubble Sort

(MBS), limit 16 bit

Merge Sort (MS), limit

32 bit

Merge Selection Sort

(MSS) limit 8 bit

100000 Quick Sort (QS), limit

64 bit

 Merge Sort (MS), limit

32 bit

Merge Selection Sort

(MSS), limit 8 bit

1000000 Quick Insertion Sort

(QIS), 64 bit

Merge Selection Sort

(MSS), limit 8 bit

Merge Bubble Sort

(MBS), limit 8 bit

Series1

0

5E+11

1E+12

M
e

rg
e

So
rt

…

M
e

rg
e…

M
e

rg
e…

M
e

rg
e…

Q
u

ic
k

So
rt

…

Q
u

ic
k…

Q
u

ic
k…

Q
u

ic
k…

Series1

Series2

Series3

Series4

Ekowati et al. / International Journal of Global Operations Research, Vol. 3, No. 3, pp. 108-115, 2022 115

The combination of the main algorithm and additional algorithms has an effect when compared to the main

algorithm alone. The combination of the main and additional algorithms can provide a faster time. The combination of

the main and additional algorithms can also provide a longer time, as shown in table 6, as follows:

Table 6. Fastest Data Size

Size Data Type

 Random Ordered Reverse Almost Ordered

100 49879 5894 3,90E+05

1000 568988 5,80E+05 3,13E+06

10000 4283755 9,70E+05 2,13E+07

100000 20340105 5,99E+06 8,13E+07

1000000 2,25E+08 1,20E+05 8,13E+07

Based on experimental results, although Merge Sort and Quick Sort have the same way of working, Merge Sort

has a faster time than Quick Sort. The biggest time difference between Merge Sort and Quick Sort occurs when the

data types used are reverse ordered and almost ordered. If you look at Table 6, the algorithm that dominates in the

experiment is Merge-Insertion Sort followed by Merge-Selection Sort. Merge Bubble Sort, Merger Sort, then Quick

Sort. This can still be said to be better in the case of inversely ordered data types with data sizes from 10000 to

100000. Quick Sort has advantages in cases of random data types and 100000 data sizes. Quick-Insertion Sort can be

used for cases of random data types and 1000000 data sizes.

4. Conclussion

From the research results, it can be concluded:

1. Combining the main algorithms Quick Sort and Merge Sort with additional algorithms Insertion Sort, Bubble

Sort and Selection Sort can have an effect on time.

2. The effect of this merger can speed up as well as slow down. In addition to combining algorithms, limit values,

the amount of data also affects the time.

3. Merge algorithms that dominate in the experiments carried out are Merge-Insertion Sort and Merge-Selection

Sort. The results of combining algorithms can provide a faster time than Merge Sort. Merge Sort algorithm

results in a faster time than Quick Sort.

References

Hibbler, R. (2015). Merge Sort. Dept. of Computer Science. Florida Institute of Technology. Florida, USA.

Sonita, A., Nurtaneo, F. (2015). Comparative Analysis of Bubble Sort, Merge Sort, and Quick Sort Algorithms in the Process of

Sorting Combinations of Numbers and Letters. Journal of Pseudecode, Vol 2, No. 2, pp. 75-80.

Horman, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2016). Introduction to Algorithms. The MIT Press. Cambridge.

Massachusetts London. England

Karve, S. (2016). Insertion Sort Example. http://www.dreamincode.net/code/snipp et279.htm. Retrieved 18 May 2016.

Kumalasari, D. (2017). Comparative Analysis of the Complexity of Bubble Sort, Cocktail Sort and Comb Sort Algorithms with

C++ Programming Language. Journal of Engineering and Education Research Centers (SPEED), Vol. 9, No. 2, pp. 1-7.

Drozdek, A. (2017). Data Structures and Algorithms in C++. Brooks/Cole Thomson Learning. California. USA.

Sitepu, R. R. (2017). Implementation of Bubble Sort and Selection Sort Algorithm Using Multidimensional Arraylist in Multi-

Priority Data Sorting. Journal of Computing, Vol. 5, No. 1, 2017, pp. 81-87.

Bingheng, W. (2018). Merge Sort. Dept. of Computer Science. Florida Institute of Technology. Florida, USA.

Tambunan, H. S. (2018). Optimization of Shell Sort Algorithm in Sorting Letters and Numbers Data. Prima Computer Science

Information System Journal (JUSIKOM PRIMA), Vol. 2, No. 1, pp. 23-27 .

Rachmat, N. (2018). Comparison of Bubble Sort, Shell Sort, and Combination of Bubble Sort with Shell Sort. JUSIKOM Journal,

Vol. 3, No. 1, pp. 59-64.

Rheinadi, R. (2019). Algorithmic Strategy. Bandung Institute of Technology Paper

