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Abstract

The problem considered in this paper concerns a manufacturing firm located at a lake. The firm uses the lake's water in its
production process. However, the production process affects the quality of the water. The manufacturing firm will only survive if
the natural resource it uses, namely water in this case, remains available for the long term. Sustainability can be achieved through
green manufacturing practices. The problem is dynamic, and optimal control theory, namely model predictive control, is used to
determine the optimal production rate and the optimal rate of expenditure for pollution control. A numerical example illustrates
the results obtained.
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1. Introduction

There is no doubt that green manufacturing has widespread environmental benefits. In green manufacturing, fewer
natural resources are used, and pollution and waste are reduced. This is accomplished by adopting practices that
influence the product design, process design, and operational principles. Impacts on the environment are lessened.

Clean and green manufacturing, or sustainable manufacturing, concerns in particular systems that use renewable
energy. Fewer natural resources are used, and lean technology equipment of all kinds are utilized to lower pollution,
minimize waste, and reduce emissions. Sustainable manufacturing can be applied in all manufacturing sectors that
minimize waste and pollution, enables economic progress and conserve resources. It lead to environmental protection.

The set of problems that relate to governing economic activity in order to promotes human well-being,
sustainability, and justice is known as ecological economics. Optimal control theory has been used extensively to
solve a variety of such problems. For example, (Highfill and McAsey, 2001) use optimal control theory to choose the
appropriate levels of the two disposal techniques: landfilling vs recycling. They show that once recycling begins, it
will increase.

Eutrophication is the process through which a body of water, such as a lake, becomes excessively covered with
plant and algae. This is usually due to increased nutrients in the water from man-made sources. (Navdal, 2001)
analyzes the optimal regulation of eutrophying of bodies of water in the presence of threshold effects. He shows that
fertilizer use should decrease with time until the lake is able to clean itself. At that point, fertilizer use is allowed to
increase.

Pollution is the introduction of harmful materials into the environment. It has catastrophic effects on the earth.
(Kawaguchi, 2003) introduces a pollution accumulation model. He shows that social pollution control policy should
aim at the optimal stationary level of pollution, not only the growth rate or the flow. Pollution is also the subject of
(Hartl et al., 2006). They consider a set of production plants which use water from some lake that they pollute during
the production process. They derive the optimal amounts of water to be taken from the lake or to be pumped back
from a waste water reservoir.

Water resources can be used to generate electricity. They can also have other uses such as industry, irrigation, etc.
da Silva and (de Souza, 2008) present a dynamic model to analyze the tradeoff between different uses of water. They
establish that the price of water for non-energy uses should be twice the price of the energy goods, indicating the
necessity to substitute other sources of energy for hydroelectric power.
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Optimal control problems are usually formulated with a single objective function and one or more differential
equations, known as state equations. There is a single decision maker that tries to optimize the objective function.
When there is more than one decision maker, each having an objective function they try to optimize, subject to a set
of state equations, then an extension of optimal control theory, known as the theory of differential games is used.

(Brock and Dechert, 2008) build a simple model of two spatially connected ecosystems. They formulate a dynamic
game for the case where management authorities cannot coordinate. Use of games to tackle pollution problems have
also been considered by (Kossioris et al., 2008) and (Tapiero, 2005a, 2005b, 2009). See (Jgrgensen et al., 2010) for a
survey of literature which utilizes games to formulate and analyze multi-objective problems in the economics and
management of pollution. For a review of differential games applications to management science and operations
research problems, see ( Feichtinger et al., 1983).

The problem we are interested in in this paper is that of pollution control. It was first described by (Sethi, 1977). It
concerns a manufacturing firm located on a lake. The firm uses hydropower, or hydroenergy, a form of renewable
energy that uses the water stored in the lake to create electricity in hydropower plants. It is assumed that the
production process pollutes the lake. The pollution, in turn, increases the firm's production costs. The control problem
is to determine the optimal production levels.

This problem has also been considered by a few other authors. (Feichtinger, 1982) views Sethi's model as a
differential game between a governmental agency for cleaning the environment and a firm polluting the environment
by producing an output. The governmental cleaning agency aims at providing a high level of environment quality
taking into consideration the expenditures for its cleaning. (Hartl, 1982, 1983) considers a general nonlinear model of
which Sethi's model is a special case. Hartl uses stability analysis to study the qualitative properties of the optimal
policy. Other models related to Sethi's are that of (Clarke, 1987) who takes into account externalities in production
and (Feichtinger, 1988) who incorporates business cycles.

We integrate the following features into Sethi's model. First, some of the parameters that were constant in Sethi's
model are dynamic in our model. These parameters are the self-cleaning ability rate of the water and the pollutivity of
a unit production. Second, we take into account the inventory-production process. It seems natural to consider this
process since production affects the quality of the lake. Third, we assume that items produced are subject to
deterioration, and the deterioration rate is dynamic. Fourth, the system is assumed to be of the tracking-type, as is
customary in many engineering management problems. Finally, instead of looking for the optimal solution at the
beginning of the planning horizon, our solution procedure optimizes the system over small successive intervals,
known as prediction intervals.

The formulation of the model is presented in Section 2 and the solution to the model is presented in Section 3. A
numerical example is treated in Section 4 and the paper is summarized in Section 5.

2. Model Formulation

Consider a manufacturing firm on a lake. The firm uses the water from the lake for its production process. The
production process in turn pollutes the lake. Let H denote the length of the planning horizon, and for any ¢, € [0, H],
let [tq, to + T] represent the prediction horizon. Here T > 0 is much smaller than H. Using Sethi's notation, we
introduce the state variable Q(t) which represents the quality of the lake at time ¢, and the control variables P(t) and
u(t) which represents the production rate at time t and the rate of expenditure for pollution control at time ¢,
respectively. Letting A(t) and a(t) denote the self-cleaning ability rate of the water at time ¢ and the pollutivity of a
unit production at time ¢, respectively, the dynamics of the lake quality are governed by the following state equation,
see (Sethi, 1977):

d
7: 2O = —[2O) +u®1®) + a(®P (), Q0) = Qo (1)

The initial value Q¢ is known. The exogenous variables A(t) and a(t) are constant in Sethi's model, while we assume
that they are dynamic in our case for more generality.

To incorporate the activities of the firm in the model, we introduce the second state variable, I(t), which represents
the inventory level at time t. The initial inventory level I is known. The items are assumed to deteriorate while on
the shelf at a dynamic rate 8(t). The evolution of the inventory level occurs according to the well-known differential
equation

d
71O =P©) = D) -8, 1(0) = . (2)

Following (Sethi, 2019), we assume a system of the tracking type where the firm sets targets for the state variables: a
target inventory level at time t denoted by (t), and a target quality of the lake at time t denoted by Q(t). The
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corresponding target control variables are a target production rate at time ¢ denoted £(t) and a target pollutivity of a
unit production at time t denoted @(t). Because the target variables must satisfy the state equation (1) and equation
(2), we can easily show that the target control variables are given by

R d . R
P(t) = El(t) +D(t) + 0(t)I(t), 3)
and
o1 d . . R
u(t) = 00 —EQ(t) —A®)Q®) + a(®)P(D)]. (4)

The firm aims at having each variable, either state or control, as close as possible to its respective target during the
prediction interval. Thus, the following penalties are incurred for each deviation:

py: penalty when I(t) deviates from [(t);
p, : penalty when Q(t) deviates from Q(t);
g, : penalty when P(t) deviates from P(t);
q, : penalty when u(t) deviates from %(t);
c; : final inventory state penalty;

¢, : final quality state penalty.

The following objective function is selected to be minimized:

to+T
J= - f (D1AI(D)? + P,AQ(0)? + G AP(6)? + g hu(t)?}dt
2., )

C C
+?1Al(t0 +T)% + 72AQ(t0 +T)?,

where the shift operator A is defined by Af(t) = f(t) — f(t). Finally, the state equation (1) and equation (2) are
rewritten under the following, more convenient forms:

%AI (t) = AP(t) — 0(t)AI(L), (6)
and
d
A0 = —[2(®) + 2()]AQ (1) — Q(©)Au(t) + a(t)AP(D). (7)

3. Model Solution

We need to solve the problem of finding the optimal control variables P(t) and u(t) by minimizing the objective
function equation (5) subject to the state equation (6) and equation (7). The integral in equation (5) is calculated using
the trapezoid formula of numerical analysis. The prediction horizon [tg, ty + T] is divided into m subintervals of
equal length h = T/m. For convenience, we will write t instead of ¢, in the rest of the paper. We will use a matrix
notation by introducing the following m x 1 vectors.

U(t) = [AP(£), AP(¢ + h), AP(t + 2h), -, AP(t + (m — DR)]7,
V(t) = [Au(t), Au(t + h), Au(t + 2h), -, Au(t + (m — 1)h)]T,
G1(t) = [x,(6),0,---,0]",

Go(t) = [x,(),0,---,0]",
and m x m diagonal matrices

. hq hq
Q:(6) = diag [x; (0, 5%, 5.
. hq hq
Qu(0) = diag |x,(0), 52, 2],
and
xs(t) 0 - 0
Q12(t)= : : : |
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where
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and
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with § =m(m —1)/2 and 8 = m(m — 1)(2m — 1)/6. Using this notation, the objective function equation (5) is
rewritten as
J= 2%+ G (OUE) — G OV(E) —UT([E)Q12(OV(E) + UT (R (HU(L)
HVT(OQ(OV (D), (8)

where x(t) is independent of the control variables and is given by

xo(t) = (g{(m — 1) — 26R[A(1) + (D] + BR*[A(D) + (D]}

h h
+ [% + Cz—z] 1 — mh[A() + (D]} + %) AQ(1)?

hmp; ¢ 2
{ > +2 [6p1+

h3 h3m? ¢ h*m?
+[ﬁp; el Tt ! z ]G(t)z}AI(t)z.

p h*m

+c hm] a(t)

The necessary optimality conditions
G1 () — Q2(OV(8) +2Q,(DU(E) = 0, )]
G2 () + Q12(DU () —2Q,(O)V () =0, (10)

yield the optimal control variables

X2 () x5 () — 221 (£) x4 (t)

dx3(0)x4(t) — x5(t)%

Au(e) = x1 (E)x5(£) — 2x, () x5 ()
T Ax3()x,(t) — x5(t)?

Substituting equation (11) and equation (12) in equation (1) and equation (11) in equation (2) yields the following
system of differential equations that is solved numerically to obtain the optimal state variables:

AP(t) =

(11)

(12)

X2 (05 (6) — 221 (Dx4(0)
TN NG A LA a3
X1 ()75 (6) — 22, (E)x (8)
4x3(t)x4(t) — x5(t)?

X2 (x5 () — 26, (D4 (2)
4&@&@—&@2]““ (14)

4wy =p
7/ O=FO +

d A
e = —po+am+ Je®

+ [ﬁ(t) +
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The optimal objective function value, where the " (t) " has been omitted for conciseness, is given by

J"= x+ (22204 — X%5) (X1 %8 — 2X1X3X4 — X3%X2X5)

(x2 — 4x3)? [
+(2x3%5 — x1X5) (X2%2 — 2X3%X5%4 — X1 X4Xs5)
+x5(2x1%4 — X2%5) (2x3X7 — X1X5)].

(15)

4. Numerical Example

To illustrate the results obtained, consider a manufacturing firm on a lake as described in this paper. Initially, at time
to=0,I,=0,Q, = 0, and the firm is seeking the optimal production rate P(t) and the optimal rate of expenditure
for pollution control u(t), over a prediction horizon of length T = 15. The firm has selected the following targets for
the state variables: [(t) = 1/(5 + 2t) and Q(t) = 1/(25 + 50t?). It follows from equation (3) and equation (4) that
the optimal targets for the control variables are given by

. %2 1 1
p(t) =
O=Gr22 T T+t T T+59G + 20

and

. 100t 1 25 + 50t2 -2 1 1

u(t)_25+50t2 (1+10t)+ 1+ 15t % (5+2t)2+1+t+(1+5t)(5+2t) '
To minimize the gap between each variable and its corresponding target, the firm estimates that the penalties due to
the deviations are given by p, =1,p, =2, g, =1,q, =2,¢c, =40, and ¢, = 45. Estimating the exogenous
variables, the firm finds that the self-cleaning ability rate of the water is given by A(t) = 1/(1 + 10t), and the
pollutivity of a unit production is given by a(t) = 1/(1 + 15t). Items on the shelf deteriorate at a rate 9(t) =
1/(1 + 5t), and finally the demand rate is forecast to be D(t) = 1/(1 + t). The prediction interval [0,15] is divided
into m = 20 subintervals of equal length h = 0.75. Using MATLAB, the programming language and numeric
computing environment developed by MATHWORKS, the firm solves numerically the nonlinear differential system
equation (13) and equation (14). The solution obtained is depicted in Figure 1. We can see that each state variable
converges towards its target, as desired. The optimal state variables thus obtained are then substituted in the control
equations equation (11) and equation (12). The resulting optimal control variables are depicted in Figure 2. We can
see that each control variable converges towards its target, as desired. The optimal objective function value is found to
be J* = 17,962. In summary, all the firm has to do is decide what their goal inventory level and goal lake quality
should be. Then, they readily know, at each instant of time, how much they should produce, and how much they
should spend to control the pollution.
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Figure 1: Optimal inventory level and quality of the lake.
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Figure 2: Optimal production rate and rate of expenditure for pollution control.

The method works quite well for small values of the prediction interval. To confirm this, we have calculated the

optimal objective function value J* for different values of the prediction horizon length T. Figure 3 shows that, as
expected, the higher the value of T, the higher the total cost.

5. Conclusion

The present paper contributes to the greening of a manufacturing firm. The problem considered uses a linear state
equation to model the variations of the inventory level and a nonlinear equation to model the quality of the water. The
optimal production rate and the optimal expenditure rate to control the water pollution are obtained.

As a future work, one could consider the case where the deterioration rate of the items depends not only on time but
also on the quality of the lake. State dependent usually renders the model more complex and mathematically more
challenging.
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Figure 3: Optimal objective function value J*(T).
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