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Abstract  

This paper focuses on multi-objective optimization problems that are an important part of operations research. This part is 

concerned with mathematical optimization problems involving two or more interdependent objectives to be optimized 

simultaneously. Thus, there is not a single optimal solution for multi-objective problems, but a set of solutions that represents the 

compromise (Pareto-optimal, efficient, non-dominated, trade-off, or non-inferior) solutions and can be visualized as Pareto front 

in the objective space. The best solution of this set has the shortest distance to the ideal (utopian) solution, whereas the ideal 

solution optimizes all objective functions, which often cannot be found. The main contribution of this paper is to introduce some 

methods to find the best compromise solution. These methods depend on new calculations for the normal of objectives. They can 

help to reduce the overall computational distance of the searching process. Therefore, they are flexible and stable. Besides, some 

numerical examples are presented to demonstrate the effectiveness of proposed methods with discussing their similarities and 

differences. The experimental results show that the proposed methods are effective and efficient for many different multi-

objective (convex and non-convex) problems. 

 

Keywords:  Multi-objective optimization problems, Ideal point, Best compromise solution, The advanced Alia's method, The 

mixed Alia's method. 

 

1. Introduction  

     In recent years, there has been a quickening pace of events and increased growth in the needs or demands of 

society with conflicting objectives or opinions to each other that led to the creation of many different applications of 

multi-objective optimization problems (MOPs). Consequently, the development of systems efficiency has become an 

attractive research topic. Most of these recent improvements are concentrating on traditional and evolutionary multi-

objective optimization problems. A multi-objective optimization or vector optimization method is a method for 

optimizing the collection of objective functions subject to a number of constraints that are bounded systematically and 

simultaneously. There are two goals of such a problem: first, finding a set of solutions as close as possible to Pareto-

optimal front (trade-off solutions), and second finding a set of solutions as diverse as possible in the obtained non-

dominated front. Generally, a multiple-objective optimization problem doesn't have a single solution that could 

optimize all objectives simultaneously. It never searches for an optimal solution but for an efficient solution that can 

best suit a compromise solution to all multiple objectives. Getting a suitable compromise solution corresponding to a 

multi-objective optimization problem is a difficult task due to the conflict between various objectives and goals. 

However, there is a certain area where mathematical modeling and programming needed (Ojha, 2009), (Mavrotas, 

2009), (Davoodi, 2011), (Ota, 2015). This research is considered an interesting extension of the advanced Alia's 

methods (Gebreel, 2021), where it proposes to solve the multi-objective optimization problems for providing the best 

solution that is very close to the utopian point. The paper is divided into four main parts; titled methods, theorems, 

features, and examples. 
The remainder of this paper is organized as follows: the next section covers the basic concepts and definitions of 

multi-objective optimization. After that, section 3 discusses the proposed four models to calculate the normal of 
objectives. Followed by, section 4 introduces in more details the proposed methods to find the best compromise 
solution. Section 5 illustrates some numerical examples and presents a comparison with previous work. Finally, 
section 6 highlights the main conclusions and future work of the paper.  
 

https://ijqrm.rescollacomm.com/
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2. Multi-objective Optimization  

A multi-objective optimization problem can be mathematically defined as follows: 

Min: F(x) = (f1 (𝐱),  f2 (𝐱), . . ., fk (𝐱)),   k  ≥ 2,                  

Subject to: M = {x ∈ Rn/ gr (𝐱) ≤ 0, r = 1, 2, 3, …, m}.                                                                                               (1)                              
Where: 

fi (𝐱), and gr (𝐱), i = 1, 2, …, k,  r =1, 2, …, m are continuous functions,  

x = (x1, x2 , … , xn) is a decision vector that represents a solution in the search-space of n dimensions, 
k is a number of objectives, 

The set of constraints "M" of the problem defines the feasible region in the search space of the problem. Any vector of 

variables "x" which satisfies all constraints is considered a feasible solution. The goal is minimizing all objective 

functions simultaneously.  
Assume that 

fi(𝐱∗) = min fi(𝐱),  i = 1, 2, …, k,  

Subject to: x ∈ M.                                                                                                                                                           (2) 

The following basic terms related to multi-objective optimization that will be frequently used in further discussion. 

2.1. Scalarization 

Scalarization is a standard technique to find Pareto optimal points for a vector optimization problem. It works on 

combining the objective functions to become a single objective function that will be optimized (Kashfi, 2010), (Boyd, 

2004).  

2.2 . Convex and Non-convex Optimization Problem 

A convex optimization problem consists of both objectives and constraints, which are mainly convex. This means 

that they satisfy the inequality: 

fi (αx +  βy)  ≤  α fi (x) +  β fi (y), for all x, y ∈ Rn, and all α, β ∈ R with α + β = 1, α ≥ 0, β ≥ 0.                         (3) 
Therefore, linear and quadratic programming problems are both considered to be convex problems. However, any 

problem will be considered as non-convex, when it has a non-convex objective or a non-convex constraint as pictured 

below in Figure 1. Such a problem may have multiple feasible regions and multiple locally optimal points within 

each region (Gebreel, 2021), (Boyd, 2004).  

 

 

 

 

 

 

 

 

 

2.3. Nonlinear Optimization 

    Nonlinear optimization (or nonlinear programming) is the term used to describe an optimization problem when the 
objective or constraint functions are not linear (Boyd, 2004). The nonlinear programming contains quadratic and non-
convex optimization problems. 

2.4. The standard Euclidean distance method 

The standard Euclidean distance between two points in a bi-dimensional space is the square root of the sum of the 

squared differences between the first and second components of each point (Kamal, 2018), (Opricovic & Tzeng, 

2004). Giving two points (x1, x2) and (y1, y2), their Euclidean distance is calculated as: 

√(x1 − y1 )2  +  (x2 − y2)2 .                                                                                                                                     (4) 

 

  

Figure 1: Convex and Non-convex Shapes. 
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Extension to the 𝑛 -dimension space, the formula is as follows: 

√∑ (x𝑗 − y𝑗)
2𝑛

𝑗=1                                                                                                                                                         (5) 

2.5. The best efficient solution 

The best efficient point on the efficient front is called the Best point which has the shortest distance from the 
utopian point (Gebreel, 2021). 

2.6. Pay-off table 

     A pay-off table (pay-off matrix) is constructed using the decision vectors obtained when calculating the utopian 

objective vector. Column i of the pay-off table displays the values of all objective functions calculated at the point, 

where fi obtained its minimal value. Hence, fi
* is at the main diagonal of the table. The maximal value of the row i in 

the pay-off table can be selected as an estimation of the upper bound of the objective fi for i =1, 2, 3, …, k over the 

efficient set (Das, 1999), (Miettinen. 1998). 

2.7. Alia's normal model (ANM) 

      It helps to find the best efficient solution for multi-objective convex programming problems. 

2.8. The advanced Alia's method 

      On solving the multi-objective convex programming problems, this method gives the best compromise solution 

for all or some weights of objectives. It develops the existing Alia's method based on Alia's normal model (ANM). 

2.9. The mixed Alia's method 

   It integrates the advanced Alia's method with the distance of objectives method (Gebreel, 2021). Its mathematical 

model is as follows: 

(MAP):   

Min:  ( ∑ wi
k
i=1  d | fi (𝐱) − fi

∗| + ‖N‖2 δ),  

Subject to:  

fi (x) – ni δ –  ∑ wi
k
i=1  d ≤  fi

∗,  i = 1, 2, 3, ..., k,           

M = {x ∈ Rn / gr (x) ≤ 0,   r = 1, 2, …, m}.                                                                                                                   (6)                                                                       

Where: 

x = (x1, x2 , … , xn) is an n-vector of decision variables,  

w1, w2 , … , wk are the weights of the objective functions fi (x), wi ≥ 0,  i = 1, 2, ..., k, ∑ wi
k
i=1  = 1. 

d is a general deviational variable for all objectives.                                                                        

k is a number of objective functions. 

fi
∗, i = 1, 2, 3, …, k are the individual optimal of the objectives. 

Nδ is the normalized controlling vector.   

δ (variable) is clearly positive due to the feasibility of the constraints. 

N = (n1, n2 , … , nk) is the normal vector directed in the positive direction to the utopia hyper-plane. 

3. The Proposed Normal of Objectives  

This section presents some new techniques for calculating the normal of objectives. There are four formulations as 
follows: 

3.1. The First Alia's Normal Formulation 

The objective function of the first Alia's normal formulation (FAN) consists of the standard Euclidean distance for 

the normal vector of objectives from the utopia point. Additionally, its constraint is the same constraint as Alia's 

normal formulation (ANM) (Gebreel, 2021) for k objectives. This formulation is given below: 

(FAN):   

Min: √∑ (ni −  fi
∗)2k

i=1  ,  

Subject to:  p t – ∑ ni
k
i=1  ≤  fi

∗, i = 1, 2, 3, ..., k.                                                                                                            (7)  
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Where: 

p is a pay-off matrix. 

t is a vector of the decision variables for normal of objectives.  

Theorem 1: 

Let ni, i = 1, 2, 3, …, k are the normal of objectives vector, 𝑓𝑖
∗ are the individual optimal of objectives fi, p is a pay-off 

matrix, then the solution of (FAN) problem must be optimal.  

Proof: 

In the (FAN) problem, the standard Euclidean distance between the normal of objectives (ni, i =1, 2, 3, …, k) and 

the individual optimal of objectives fi are optimized, such that: p t – ∑ ni
k
i=1  ≤  fi

∗. Then based on the optimality linear 

programming theory, the optimal solution of this problem is given. 

3.2. The Second Alia's Normal Formulation 

Basically, this model is used to distinguish between conflicting and non-conflicting objectives. It optimizes the pay-

off matrix and normal of objectives that are limited by the optimum value for every objective function. The obtained 

results are zeros or the absolute value of the individual optimal solution of objectives. The non-conflicting objective 

has a zero value of ni, whereas the conflicting objective has ni equal to the absolute value of the optimum value for 

each objective. The second Alia's normal problem (SAN) can be represented as follows:         

(SAN): 

Min:  C,  

Subject to:  p t – ∑ ni
k
i=1  ≤  fi

∗, i = 1, 2, 3, ..., k.                                                                                                            (8)    

Where, C is any other variable for helping to optimize the constraint of problem (SAN). Of course, its value always is 

equal to zero. 

Lemma 1:  

  The smallest face containing all the edges incident to a common vertex of a pointed polyhedron is the all 

polyhedron (Armand, 1993).  

Theorem 2: 

 The optimized normal of objectives with the pay-off matrix which are limited by the individual optimal solution of 

objectives are containing a polyhedron of problem (SAN). 

Proof: 

Based on Lemma 1, there exists an optimal solution for the linear programming problem (SAN). Then, the proof is 

obtained. 

Remark 1: 

It is clear that, this model presents many zeros for values of ni, which creates flexibility in selecting the appropriate 
values of the normal. 

3.3. The Third Alia's Normal Formulation 

     This model avoids the defects of the previous two models to improve their results. Therefore, its results have high 

quality to find the best compromise solution easily. It optimizes the total variables of this problem. The constraint of 

normal problem consists of a pay-off matrix and the normal of objectives; that are limited by the individual optimal 

solutions. The third Alia's normal (TAN) problem can be represented as follows:  

(TAN): 

Min:  (t +∑ ni
k
i=1 ),  

Subject to:  p t – ∑ ni
k
i=1  ≤  fi

∗, i = 1, 2, 3, ..., k.                                                                                                            (9)    

Theorem 3: 

On optimizing all variables of the normal problem with its constraint, the values of ni are said to be of high quality 
to get the best solution easily. An illustration of such a constraint is as follows: 

p t – ∑ ni
k
i=1  ≤  fi

∗, i = 1, 2, 3, ..., k.                                                                                                                               (10) 

Proof: 

 The theorem is proved by applying the linear programming theory of the (TAN) problem. 
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Remark 2: 

     For the above three normal formulations, the resulting normal in the minimum case has the minimum value 

corresponding to the individual optimal of objectives fi
∗. 

3.4. Alia's normal formula (ANF) 

      In a convex multi-objective problem, this method uses the difference between the optimal of every objective 

function and the optimal of all objectives simultaneously as normal of objectives. It has the following form: 

(ANF): 

               | 𝒇∗(𝒙𝒊) – 𝑓𝑖
∗|, i = 1, 2, 3, ..., k,   (In the minimum case)                                                                             (11) 

               | 𝑓𝑖
∗ –  𝒇∗(𝒙𝒊)|, i = 1, 2, 3, ..., k,   (In the maximum case)                                                                             (12)     

Where, 𝒇∗(𝒙𝒊) is the optimal solution of the total objectives (without weights), and fi
∗, i = 1, 2, 3, ..., k are the 

individual optimal solutions.  

Theorem 4: 

In a convex multi-objective problem optimization, let the optimal solution of the total objectives (without weights) is 

f*(xi), and the individual optimal of the objectives is 𝑓𝑖
∗, then the absolute difference between them ( | 𝒇∗(𝒙𝒊) – 𝑓𝑖

∗| ) is 

used as normal of objectives to get the best solution of this problem.  

Proof: 

Since the best compromise solution of a multi-objective problem has the shortest distance from the ideal point, then in 

a convex multi-objective problem, the difference between the individual optimal of the objectives and the optimal 

solution of them (| 𝒇∗(𝒙𝒊) – 𝑓𝑖
∗|) helps to get the best point. Where, this optimal point is one of the feasible known 

points toward the best solution to such a problem.   

 

Remarks 3: 

• When using Alia's normal model (ANM) in a multi-objective problem up to two objectives, the following can be 

observed: 

- This model is suitable for only two objective optimization problems. Where, it requires knowledge of the 

distinction between conflicting and non-conflicting objectives. 

- If all ni, i = 1, 2, 3, …, k of objectives (conflicting and non-conflicting together) are optimized, the resulting 

values of zeros are increasing. 

- In conflicting and non-conflicting objectives optimization problem, the ni of conflicting objective is selected 

with the non-conflicting objective that helps to get the best point easily.  

• The first three normal formulations are different in objectives function. 

• The maximum functions for the first three normal models formulations are the negative signal of minimum 

functions for them. 

4. The Proposed Methods  

 This section designs some methods to solve the multi-objective problems for finding the best efficient solution. 

The main idea of these proposed methods comes from developing of the advanced Alia's method and the mixed Alia's 

method with some additional changes. In the proposed method, the second condition is considered as a robust 

condition for their design. It computes the Euclidean distance of objectives which minimizes the distances for all the 

obtained efficient points from the individual optima. In this case, the robust Pareto-optimal set among objectives can 

be given through searching for the best possible solution.           

4.1. The steps of the proposed methodologies 

   The following steps can be used to implement the proposed methods: 

1- Construct the Pay-off matrix (p) by calculating the individual minima (or maxima) fi
∗ of the objectives fi. 

2- Determine Alia normal of objective vectors (N) by any one of the proposed normal models. 

3- Formulate the multi-objective optimization model as single objective optimization with the use of weighting 

objectives method.  

4- Solve the proposed formulations using any of the available solvers such as LINGO to obtain an efficient 

solution. 
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5- Calculate the Euclidean distance of this efficient point. If this solution has the minimum distance from the 

utopian point, then the process is terminated, otherwise proceed to next step. 

6- Define new weights (or/ and sometimes new values of normal) for each objective and repeat from step 3 to 

step 6 until the best efficient solution is reached. 

The flowchart of the proposed methods is given in the Figure 2. 

      In this work, two types of the proposed methods are introduced. The first type is related to develop the advanced 

Alia's method, but the second type develops the mixed Alia's method. Details about these types will be given below. 

         First of all, let us denote the Convex Hull of the Individual Minima in the objective space (CHIM) by H, that is 

the image of constraints C mapped by the vector function F in the objective space. An element P ∈ H is a vector (P1, 

…, PH), where Pi is the i-th objective function value. The concept of best compromise solution is define as follows: 

Let P be a Pareto optimal solution for (MOP); P is said to be a best compromise solution if Pi reaches a minimum 

distance value for i= 1, …, H. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2. The types of the proposed methodologies 

     In the following sections, three different formulations are presented to find the best efficient solution of a 

multi-objective problem for both convex and non-convex cases.   

 
Is  

the best compromise 

solution obtained 

? 

 

Calculating Alia normal of objective 

vectors (N)  

Start 

Stop 

Creating the pay-off matrix (p) for MOP 

 

Figure 2: Flowchart Representation of the Proposed Methods. 
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4.2.1. The first formulation (For convex case) 

This formulation is a modified Alia method for studying the general convex multiple objective programming 
problem to get the best point. Consider the following convex problem denoted as (AP1). 

(AP1): Min  ( ∑ wi
k
i=1  f𝑖(𝐱)+ ‖N‖2 δ + h),  

            Subject to:  

            fi(𝐱) – ni δ ≤  fi
∗,   i = 1, 2, 3, ..., k, 

           

             √∑ (fi −  fi
∗)2k

i=1    –  a h  ≥ 0,    i = 1, 2, 3, ..., k, 

            M = {x ∈ Rn/ gr(𝐱) ≤ 0, r = 1, 2, 3, …, m}.                                                                                                     (13) 

Where: 

x = (x1, x2, …, xn) is a vector of the decision variables, n is a number of  the decision variables.  

w1, w2 , … , wk are the weights of the objective functions fi = fi (x), wi > 0, i= 1, 2, ..., k,  ∑ wi
k
i=1  =1. 

d is a general deviational variable for all objectives. 

k is a number of objective functions. 

fi
∗, i = 1, 2, 3, …, k are the optimum value of f𝑖(𝐱) over M. 

Nδ is the normalized controlling vector.   

δ is a real variable; it is clearly positive due to the feasibility of the constraints. 

N = (n1, n2, …, nk) is the normal vector directed in the positive direction to the utopia hyper-plane.  

a and h are the deviational variables for the distance = √∑ (fi − fi
∗)2k

i=1   in the convex case. 

    Let us look at the following lemma and theorems, which are important for the interpretation of (AP1). 

Lemma 2: 

 Let the constraints of Alia's problem (AP) satisfy Slater constraint qualification (or any other constraint 

qualifications). If for 𝑤 > 0, (𝑥, 𝛿) is an optimal solution of (AP), then 𝑥 is an efficient solution of a multi-objective 

convex programming problem (MOCPP) (Gebreel, 2016).  

Theorem 5:  

 If for 𝑤 > 0, (𝑥, 𝛿) is an optimal solution of (AP) such that fi (𝑥) – ni 𝛿  = fi
*, i = 1, 2, 3, ..., k, then 𝑥 will be an Alia 

efficient point for (MOCPP) (Gebreel, 2016). 

Theorem 6:  

 A solution x* ∈ M is an efficient solution of (MOCPP) if and only if  x* is an optimal solution of (AP1). 

Proof:  

 Let for 𝑤 > 0, (𝑥, n𝑖, δ) be an optimal solution of (AP1). Then from Lemma 2, it follows that  𝑥 is an efficient 

solution of (MOCPP). Since  𝑥 satisfies the relation fi (x) – ni δ ≤  f𝑖
∗
, i = 1, 2, 3, ..., k, with selecting "h̅" at optimum 

value such that: 

 

 √∑ (fi − fi
∗)2k

i=1   –  a̅ h̅  ≥ 0,                                                                                                                                       (14) 

Then from the definition of efficient solution (Miettinen, 1998), it is clear that 𝑥 is an efficient solution for 

(MOCPP).   

Theorem 7: 

 In the objective space EP (2 ≤  P ≤ ∞), let all objectives in the case of (MOCPP) are conflicting to each other, an 

efficient solution x* of problem (AP1) is said to be only one best compromise solution in H      F(C) for any w > 0, if 

and only if there doesn't exist another solution  𝒚 ∈ F(C) such that d(y) > d(x*), and   √∑ (𝑓𝑖 − 𝑓𝑖
∗)

2𝑘
𝑖=1   – 𝑎̅ ℎ̅  ≥ 0. 

This mean x* has minimum distance from the utopian point.  

Proof:  

 Firstly, the following Kuhn- Tucker (K.T) conditions (Bazzraa, 1979) to give the optimal solution are shown for this 

problem.  

  

∩
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Kuhn- Tucker conditions for problem (AP1): 
 
 
 
 
 
 

                                                            j = 1, 2, 3, …, n,                                                                                                (15) 

∑ ni
k
i=1   µi = ‖N‖2,                                i = 1, 2, 3, ..., k,                                                                                                 (16) 

ƞi a = 1,                                               i = 1, 2, 3, ..., k,                                                                                                 (17) 

fi (x) – ni δ ≤ fi
*,                                  i = 1, 2, 3, ..., k,                                                                                                 (18)        

gr (x) ≤  0,                                           r = 1, 2, 3, …, m,                                                                                               (19) 

 √∑ (fi − fi
∗)2k

i=1    –  a h   ≥ 0,           i = 1, 2, 3, ..., k,                                                                                                 (20) 

µi (fi (x) – ni δ – fi
*) = 0,                     i = 1, 2, 3, ..., k,                                                                                                  (21) 

αr gr (x)= 0,                                         r = 1, 2, 3, …, m,                                                                                               (22) 

ƞi (  √∑ (fi − fi
∗)2k

i=1    – a h  ) = 0,      i = 1, 2, 3, ..., k,                                                                                                (23) 

µi  ≥ 0,                                                   i = 1, 2, 3, ..., k,                                                                                                                                                       (24) 

αr  ≥ 0,                                                   r = 1, 2, 3, ..., m,                                                                                              (25) 

ƞi  ≥ 0,                                                   i = 1, 2, 3, ..., k,                                                                                               (26)     

     Secondly, utilizing the result of theorem 6 and assume that for another w* > 0, (x*, δ*, h*) is an optimal solution of 

problem (AP1) such that:  

fi (x
*) – ni δ* ≤ fi

*, i = 1, 2, 3, ..., k, and                                                                                                                         (27) 

  √∑ (fi − fi
∗)2k

i=1    –  a h   ≥ 0,  i = 1, 2, 3, ..., k,                                                                                                          (28)  

    Then, x* is the best efficient solution of (MOCPP), and there is only one optimal solution of problem (AP1). 

Therefore, the minimum distance from the utopia point holds. The proof is completed. 

Remarks 4: 

1- Uniqueness of the best point in convex optimization problems: The best point in convex optimization problems is 

only one efficient solution regardless of the number of Pareto- optimal points in conflicting objectives.  

2- Although sometimes the results of three Alia's normal formulations are different, but they can give the same best 

compromise solution. 

3- When the pay-off matrix of conflicting objectives is symmetric and the result of Alia normal model is zero(s), you 

can replace this zero(s) by one (or the total sum is one) to get the best point for all weights of problem (AP1). 

But, if the pay-off matrix of conflicting objectives is not symmetric, then the best point is resulted for some 

weights of objectives. Also, it can select any values of ni, i =1, 2, …, k for a quadratic problem that has 

conflicting and non-conflicting multi-objective more than two objectives.   

Next, there are two models to find the best point in MOPs for some weights. 

  

∂ fi (x)                          

   ∂ xj 
+ ∑ µi

k
i=1  + ∑ αr

m
r =1     

∑ wi
k
i=1    = 0, + ∑ ƞi

k
i=1  

√∑ (fi −  fi
∗)2k

i=1             

           ∂ xj 

                 

  ∂ gr (x)   

∂ xj 

   ∂ fi (x)                          

   ∂ xj 
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4.2.2. The second formulation (For convex case) 

    This formulation develops the mixed Alia's method. Consider the second following convex problem denoted as 

(AP2): 

(AP2):  Min  ( ∑ wi
k
i =1   d | fi(x) –  fi

∗ | + ‖N‖2 δ + h),  

             Subject to: 

             fi (x) – ni δ – ∑ wi
k
i=1  d ≤ fi

∗,       i = 1, 2, 3, ..., k,           

              √∑ (fi −  fi
∗)2k

i=1   – a h  ≥ 0,     i = 1, 2, 3, ..., k,  

                wi ≥ 0, i = 1, 2, 3, ..., k,  ∑ wi
k
i=1  =1. 

             M = {x ∈ Rn/ gr (x) ≤ 0, r = 1, 2, 3, …, m}.                                                                                                   (29) 

Theorem 8:                                                                                                                                                                                                                               

If for some 𝑤 ≥ 0, (𝑥, 𝛿, ℎ̅) is an optimal solution of problem (AP2) such that   √∑ (𝑓𝑖 − 𝑓𝑖
∗)

2𝑘
𝑖=1   – a h   ≥ 0, i = 1, 2, 

3, ..., k, a and h are the deviational variables for the distance √∑ (𝑓𝑖 −  𝑓𝑖
∗)

2𝑘
𝑖=1  , then 𝑥 will be a best efficient point 

for a multi-objective convex programming problem.   

Proof: 

Formulating the Kuhn- Tucker (K.T) conditions to get the optimal solution for this problem as follows:  

Kuhn- Tucker conditions for problem (AP2)   

 

                                  

                                                                     j = 1, 2, 3, …, n,                                                                                       (30) 

∑ wi
k
i=1  | fi (x) − fi

∗ | = µi  ∑ wi
k
i=1 ,                                                                                                                               (31) 

∑ ni
k
i=1   µi = ‖N‖2,                                                                                                                                                           (32) 

ƞi a = 1,                                                        i = 1, 2, 3, ..., k,                                                                                        (33)       

fi (x) – ni δ – ∑ wi
k
i=1  d ≤ fi

∗,                        i = 1, 2, 3, ..., k,                                                                                        (34)  

gr (x) ≤  0,                                                    r = 1, 2, 3, …, m,                                                                                      (35) 

 √∑ (fi − fi
∗)2k

i=1    – a h  ≥ 0,                     i = 1, 2, 3, ..., k,                                                                                         (36) 

µi (fi (x) – ni δ – ∑ wi
k
i=1  d – fi

∗) = 0,          i = 1, 2, 3, ..., k,                                                                                        (37) 

αr gr (x) = 0,                                                 r = 1, 2, 3, …, m,                                                                                      (38) 

ƞi (  √∑ (fi − fi
∗)2k

i=1    – a h  ) = 0,             i = 1, 2, 3, ..., k,                                                                                         (39) 

µi  ≥ 0,                                                         i = 1, 2, 3, ..., k,                                                                                                                                            (40)  

αr  ≥ 0,                                                         r = 1, 2, 3, ..., m,                                                                                        (41) 

ƞi  ≥ 0,                                                         i = 1, 2, 3, ..., k,                                                                                         (42)    

  ∂ gr (x)   

 ∂ xj 

+  ∑ αr
m
r =1    = 0, + ∑ ƞi

k
i =1

  

√∑ (fi −  fi
∗)2k

i=1            

                                                                                    

∂ | fi(x) –  fi
∗ |                         ∂ fi (x) 

+ ∑  µi
k
i =1  ∑ wi

k
i=1   d 

∂ xj     

 

∂ xj     

 

∂ xj     
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     Let for some 𝑤 ≥ 0, (d, 𝑥, δ, h̅,  a̅) be an optimal solution of problem (AP2), and n̅i is an optimal solution of the 

first, second, or third Alia normal model. Then from Lemma 2, it follows that 𝑥 is an efficient solution of problem 

(AP2).     

      Let 𝑥 satisfies the relations fi (x) – ni δ – ∑ wi
k
i=1  d ≤ fi

*, and  √∑ (fi − fi
∗)2k

i=1   – a h  ≥ 0, i = 1, 2, 3, ..., k. Since 

the problem (AP1) is part of the problem (AP2). Then from the definition of the best efficient solution, it is clear that 

𝑥 is the best efficient solution for some 𝑤 ≥ 0. 

Remarks 5: 

1- When the selecting of values for the normal is correct in the model (AP2), the best compromise solution is 

obtained for all weights. 

2- If pay-off matrix of non-conflicting objectives is not symmetric and the result of Alia normal model(s) is 

zero(s), then the best solution from model (AP2) is obtained for all weights (wi ≥ 0, i = 1, 2, 3, …, k). 

3- When the resulted value of ni, i = 1, 2, 3, …, k from Alia's normal formulations is zero and the pay-off matrix is 

symmetric, then the best solution is obtained for all or some weights of objectives. 

4- The first normal formulation (FAN) is used on the mixed method only, because it is not useful in Alia's method 

or the developed Alia's method.  

Corollary:  

Given the second method (AP2), the weights in its constraints to get the best efficient solution can also be used as the 

normal for the first Alia's method (AP1). 

Proof:   

 Since the first Alia's method (AP1) works with the convex multi-objective problems, then it can use its normal (ni, i = 
1, 2, 3, …, k) with total values, which are equal to one (i.e.; ∑ ni

k
i=1  =1). Besides, the total weights of constraints in 

the second method (AP2) must be equal to one for the same problem. Thus, the proof is given. 
 

4.2.3. The third formulation (For non-convex case) 

     This formulation solves the multi-objective non-convex programming problems, and it is denoted as (AP3). It is 

considered as a part of (AP2) formulation. Thus, the second formulation (AP2) can be reduced to:  

(AP3): Min  ( ∑ wi
k
i=1  | fi (x) –  fi

∗ | + ‖N‖2 δ + h),  

            Subject to:  

            fi (x) – ni δ ≤ fi
∗,                                i = 1, 2, 3, ..., k,           

             √∑ (fi −  fi
∗)2k

i=1   – a h   ≥ 0,            

            x ∈ M.                                                                                                                                                        (43) 

Where: 

w1, w2, … , wk are the weights of the objective functions fi (x),  wi ≥ 0, i = 1, 2, ..., k,  ∑ wi
k
i=1  =1. 

‖N‖2 = n1
2 + n2

2 + … + nk
2. 

 

Note that: 

• ‖N‖2 = n1
2 + n2

2 + … + nk
2. This formula is used for both cases (convex and non-convex problems).  

• ‖N‖ = n1 + n2  + ... + nk. This formula is used only in the convex case; because it may give unbounded solution in 

non-convex case. 

• In convex case: a and h are the deviational variables for the distance = √∑ (fi − fi
∗)2k

i=1  , i = 1, 2, 3, ..., k.  

• In non-convex case: a is scalar, and h is the deviational variable for the distance = √∑ (fi − fi
∗)2k

i=1  , i = 1, 2, 

3, ..., k. 
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Theorem 9: 

     If point x* is an optimal solution for problem (AP3), then x* is best efficient solution in the case of non-convex 
problem (MOP) for some weights (wi ≥ 0, i = 1, 2, 3, ..., k,  ∑ 𝑤𝑖

𝑘
𝑖=1  =1). 

Proof: 

    Assume that the best efficient solution of the non-convex problem (MOP) for some weights (wi ≥ 0, i = 1, 2, 3, ..., 

k,  ∑ wi
k
i=1  =1), which is gained by (AP3) model, is denoted x∗. Obviously, the result will be as follows:  fi (x) > fi (x∗), 

i =1, 2, 3, …, k, in the convex search space, ∀ x ∈ X. Next, supposing that x∗ is not the best efficient solution; in this 

case, there will be another solution 𝑥̅ ∈ X such that fi (𝑥̅) < fi (x∗), i = 1, 2, 3, …, k, ∀ 𝑥̅ ∈ X. According to the 

assumption that the weighting coefficients wi are nonnegative, the following statement will be: 

( ∑ wi
k
i=1  | fi (𝑥̅) – fi

∗ | + ‖N‖2 δ + h) < ( ∑ wi
k
i=1  | fi (x∗) – fi

∗ | + ‖N‖2 δ+ h).  

This is a contradiction to the assumption that x∗ is a solution of this problem. Since the problem  (MOP) at hand is non 

convex, then x∗ is the best efficient solution for some weights of this problem. 

Note that:  

1- The first Alia normal (FAN) is not appropriate for the third formulation (AP3).  

2- The (AP3) formulation is more widely used for the non-convex problems than convex.  

3- Alia's normal formula (ANF) is useful for the convex case rather than the non-convex case of multi-objective 

problems. Additionally, it is valid for the mixed advanced Alia's method rather than the advanced Alia's 

method. 

Remarks 6:  

1- The best solution of a non-convex case cannot be reached with any value of weights by weighting method. 

2- The best point in the efficient set of any vector optimization problem (VOP) is given by the proposed methods, 

whether these objectives are conflicting or not conflicting.  

3- The first formulation (AP1) produces the best solution in the convex case for all weights, when all the objective 

functions of problem (MOP) are conflicting with each other. However, if there are also non-conflicting 

objectives, then the best solution will be only for some weights. The other proposed formulations (AP2, and 

AP3) produces the best solution using only finite number of weights or all weights. 

4- In the formulation (AP2), the weights of objective functions may be different from the weights of constraints. 

On the other hand, the total of weights for objectives or constraints must be equal to one.  

5- The presented theorems reveal that when the best point is given for the problem (MOP), it's basically 

considered an optimal solution of any one of the proposed methods. 

6- The model (AP2) is more valid for convex case than non-convex case. However, it is possible to use "a" as 

scalar in the second constraint for the non-convex problem. 
7- The maximum functions for the proposed methods are the negative signal of minimum functions for them. 

4.2.4. The special formulations: 

       In this section, the family of special formulations from the proposed methods is introduced to find the best 

compromise solution for the multi-objective optimization problems. These special formulations are accurate 

alternative models.  

 

(AP1-a):   

               Min:  ( ∑ wi
k
i=1  fi (x) + ‖N‖2 δ),  

       Subject to:  

       fi (x) – ni δ ≤  fi
∗,             i = 1, 2, 3, ..., k,           

       √∑ (fi − fi
∗)2k

i=1   ≤ D,    i = 1, 2, 3, ..., k, 

               wi ≥ 0, i = 1, 2, 3, ..., k,  ∑ wi
k
i=1  =1. 

       x ∈ M.                                                                                                                                                             (44) 
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(AP2-a):   

                Min:  ( ∑ wi
k
i =1   d | fi(x) –  fi

∗ | + ‖N‖2 δ),  

             Subject to:  

             fi (x) – ni δ – ∑ wi
k
i=1  d ≤ fi

∗,    i = 1, 2, 3, ..., k,           

             √∑ (fi − fi
∗)2k

i=1   ≤ D,             i = 1, 2, 3, ..., k,  

               wi ≥ 0, i = 1, 2, 3, ..., k,  ∑ wi
k
i=1  =1. 

               x ∈ M.                                                                                                                                                            (45)                    

(AP3-a):   

                  Min:  ( ∑ wi
k
i=1  | fi (x) –  fi

∗ | + ‖N‖2 δ),  

          Subject to:  

          fi (x) – ni δ ≤ fi
∗,                    i = 1, 2, 3, ..., k,           

           √∑ (fi − fi
∗)2k

i=1   ≤ D,          i = 1, 2, 3, ..., k, 

                  wi ≥ 0, i = 1, 2, 3, ..., k,  ∑ wi
k
i=1  =1. 

         x ∈ M.                                                                                                                                                           (46) 

Where: 

 D (Constant) is the Euclidean distance between the optimal solution of total objectives (without weights) and the 

ideal point.  

 

Note that: 

In some nonlinear problems, the distance constraint in model (AP3-a) become:   

√∑ (fi −  fi
∗)2k

i=1   ≥ 0, i = 1, 2, 3, ..., k.                                                                                                                         (47) 

Remarks 7:  

To obtain the best solution, the normal vector (N), the values of weight for objectives, a, and D have to be chosen 
carefully according to the problem. 

4.3. The major features of the proposed methods 

The proposed methods have some features are stated as following: 

1) The solution obtained is efficient; that reflects the preferences of decision-maker. 

2) An important task of these new methods is to find the best efficient solution. But also throughout this search, 

a set of efficent solutions closest to the utopian point is obtained. Thus, the decision-maker would be able to 

make a better and more reliable decision. 

3) The weighted-sum of objectives is used here as a criterion for generating the efficient solutions until 

obtaining the best of them, where the weight vector provides information about what point on the Pareto-

optimal front to converge.  

4) Alia normal and Euclidean distance of objectives play also the most important role in determining the 

effectiveness and efficiency of the proposed methods in obtaining the best efficient solution. 

5) The proposed methods differ from each other in their structure, but they find the robust Pareto-optimal 

solutions.  

6) Due to the computational complexity of the nonlinear multi-objective problem, these models can give the 

best compromise solution after wards. Besides, the time of solution is increased when the number of 

objectives is increased rather than constraints. 

7) Alia's normal formula (ANF) is used easily in the second method (AP2) for convex case of multi-objective 

problems. 
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5. Numerical Examples 

For an illustration of the proposed methods, some examples are considered which include both convex and non-

convex shapes. The formulated problems have been solved by Lingo software to obtain the best solution. 

 

Example: 1  

This linear example is introduced by Alia (Gebreel, 2016). It consists of two objectives and two variables of 

minimization problem as follows: 

Min: F = (f1 = x, f2 = y),  

Subject to: 

2x + y ≥ 4,  

2x + 3y ≥ 8,  

x + y ≤ 4,  

x ≥ 0, y ≥ 0. 

    

 

 

      

 

 

 The problem has two conflicting objectives which create a convex Pareto-optimal front as shown in Figure 3.  

The ideal point of this example is (0, 0) that is infeasible solution. The pay-off matrix is (
0 4
4 0

), the first three Alia 

normal's models are (0, 0)T, then Alia normal's values take zero or any positive values that achieve the best solution. 

However, if Alia normal's formula = (f*(xi) – fi
∗) is equal to (3, 3), xi= x, y, and i= 1, 2. Then the first formuation 

(AP1) is as follows:   

Min: F= (w1 x + w2 y + (n1
2 + n2

2) δ + h), 

Subject to: 

x – n1 δ ≤ 0, 

y – n2 δ ≤ 0, 

2x + y ≥ 4,  

2x + 3y ≥ 8,  

x + y ≤ 4,  

 √(x −  0)2  +  (y −  0)2  – a h   ≥ 0,  

x ≥ 0, y ≥ 0. 

Since the normal N is (n1= 0, n2= 0)T, the selected values of N that present the best point for all weights are (n1= 

1.230769, n2= 1.846154)T, and (n1= 0.1, n2= 0.15)T for some weights. 

But, the second formuation (AP2) is: 

Min: F= (w1 d x+ w2 d y + (n1
2 + n2

2) δ + h), 

Subject to: 

x – n1 δ – w1 d ≤ 0, 

y – n2 δ – w2 d ≤ 0, 

2x + y ≥ 4,  

  

     

 

y 

 

(0, 4) 

 

(0, 0) 

 

(4, 0) 

 

(1, 2) 

 x 

 

Figure 3: The decision and objective spaces of the first example. 
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2x + 3y ≥ 8,  

x + y ≤ 4,  

 √(x −  0)2  +  (y −  0)2   – a h   ≥ 0,  

w1+ w2 = 1, x ≥ 0, y ≥ 0. 

The second formulation obtains the best point for all weights (w1, w2) > 0 when (n1= 0.1, n2= 0.15)T or (n1= 0.4, n2= 

0.6)T. The weights of objectives can be different from the value of weights in the constraints. But, the total values for 

every group of weights must be equal to one. When n1= n2= 0, this solution is obtained for some weights. In the 

special formulation, the value of D is 2.236068. Moreover, there are other two special formulations to get the best 

solution as follows: 

Min: F= (0.45 x + 0.55 y + 0.0325 δ), 

Subject to: 

x – 0.1 δ ≤ 0, 

y – 0.15 δ ≤ 0, 

2x + y ≥ 4,  

2x + 3y ≥ 8,  

x + y ≤ 4,  

√(x −  0)2  +  (y −  0)2  ≤ 2.236068, 

w1 + w2 = 1, x ≥ 0, y ≥ 0. 

Or 

Min: F= (0.463415 d x + 0.536585 d y + 5 δ), 

Subject to: 

x – δ – 0.463415  d ≤ 0, 

y – 2 δ – 0.536585  d ≤ 0, 

2x + y ≥ 4,  

2x + 3y ≥ 8,  

x + y ≤ 4,  

√(x −  0)2  +  (y −  0)2  ≤ 2.236068,  

w1 + w2 = 1, x ≥ 0, y ≥ 0. 

The best point for all above models is: f1
∗= x= 1.230769, f2

∗= y= 1.846154, its Euclidean distance= 2.2188, and the 

total of objectives (f1
∗

 + f2
∗) is 3.076923. But, Alia point is (1.6, 1.6), and its distance= 2.263. 

 

Example: 2 

The considered multi-objective programming problem has the following form (taken from (Gebreel, 2016)): 

Min: F = (f1 = x, f2 = y, f3 = – x –3y, f4 = 2x2 – 4y),  

Subject to:   x + y ≥ 2, 

                    – x + y ≤ 2, 

                    3x + y ≤ 6, 

                    x ≥ 0, y ≥ 0. 

For this example, f1 = x, f2 = y, f3 = –x –3y, f4 = 2x2 – 4y, then 

f1
* = 0 attained at the point (0, 2), 

f2
* = 0 attained at the point (2, 0), 

f3
* = –10 attained at the point (1, 3), 

f4
* = –10 attained at the point (1, 3), 
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      It is clear that f3, f4 are nonconflicting, and then we can omitt one of them from the problem. The calculated Alia 

normal is (1, 3, 0).  

      If f4 is omitted, the best efficient solution is (0.9090909, 2.727273) based on the selected values of vector N = (1, 

3, 1). It is given for all weights of model (AP1) and model (AP3), wi ≥ 0, i = 1, 2, 3. But, this solution from (AP2) is 

obtained for all weights of objectives, wi > 0, i = 1, 2, 3; when the values for weights of constraints are zero, zero, and 

one, respectively. Based on the first and third proposed normal models = (1, 3, 0), the model (AP2) uses weights of 

objectives = (0.818181818, 0.0, 0.181818182) and weights of constraints = (0.0, 0.0, 1.0) to give this best solution. 

The distance of best solution from the utopian point is 3.015. Also, this result is obtained when D = 3.16228 in the 

special models.  

     However, if f3 is omitted, the best efficient solution is (0.3106,  2.3106). The distance of solution from the utopian 

point is 2.5177, where, the model (AP1) and model (AP3) select values of N = (1, 3, 1.234153) for all wi ≥ 0,              

i = 1, 2, 3. On the other hand, model (AP2) uses values of the first and third proposed normal models = (1, 3, 0) for 

weights of objectives, which are (0.10, 0.30, 0.60), and weights of constraints are (0.001, 0.592557821, 

0.406442179). Wheras, when the values of N is selected as (1, 3, 1), the weights of objectives are (0.10, 0.30, 0.60) 

with the weights of constraints are (0.0, 0.087051514, 0.912948486). Otherwise, the weights of objectives are 

(0.0456906, 0.10, 0.8543094) with the weights of constraints are  (0.0, 0.0, 1.0). When N= (1, 3, 1.234153), the 

weights of objectives are (0.10, 0.2117, 0.6883), and the weights of constraints are (0.0, 0.165522, 0.834478).   

The special formulations use the value of D = 2.5981when the values of N = (1, 3, 1.2341516) for all wi ≥ 0, i = 1, 2, 

3 in the model (AP1-a) and (AP3-a). But, the model (AP2-a) uses the values of N = (1, 3, 1) for some weights of 

objectives such as (0.0456906, 0.10, 0.8543094) with the weights of constraints are (0.0, 0.0, 1.0).    

     By using the mentioned methods based on the first and third proposed normal models = (1, 3, 0, 0), the best 

efficient solution can be obtained as: (0.78235954, 2.78235954) or (0.78235955, 2.78235955) for four objectives 

together. Its distance from utopia point is 3.02. In addition, model (AP1) and model (AP3) used three groups of 

weights in objective function, which are: (0.13, 0.05, 0.04, 0.78), (0, 0, 0, 1), or (0.10, 0.07, 0.01, 0.82). They selected 

values of vector N as: (1, 3, 0.93865851, 0.93865851) or (1, 3, 0.9386585, 0.9386585). But when model (AP2) used 

Alia normal = (1, 3, 0, 0), it selected the weights of objectives = (0.01, 0.02, 0.0756029, 0.8943971) and weights of 

constraint = (0.01, 0.11, 0.13710680, 0.76289320). however, based on the selected values of vector N as: (1, 3, 

0.3527264, 0.3527264), the weights of constraint are (0.01, 0.11, 0.1118723514, 0.7681276486). The same results are 

given by the special formulations. It is evident that the best solution from all proposed models is obtained for some 

weights of objectives because the third and fourth objectives are nonconflicting.  

       At last, the results show that these proposed methods are more acceptable than previous approach.  

Example: 3 

The following problem has been presented by Abbas and Huda (Al-Bayati, 2012).  

Min: f1(x) = x1 x5, 

Min: f2(x) = x1
-1x3

2x4
4, 

Subject to: 

5x1
-1 x2 ≤ 1, 

2.5x2
-1 x3

2 + 1.5x3
-1 x4

-0.5 x5
-0.5 ≤ 1, 

xi ≥ 0, where i = 1, 2, 3, 4, 5. 

 The pay-off matrix is: (
0.1301946E − 06 5904.271

1.21E + 35 0.2602306E − 07
),  

      The selected normal of objectives is n1= 0.8, n2 = 0.4; w1 = 0.43689, w2 = 0.56311, and a = 0.3359.  
Then, the optimal solution of model (AP3) is x* = (4.778309, 0.9556618, 0.3228839, 5.370617, 7.597504). But, the 
special formulation (AP3-a) uses n1= 0.799942, n2 = 0.399942, D= 42.985 with equal weights. Its result is x* = 
(13.25349, 2.650698, 0.5377426, 5.370539, 2.739184). The image in the objective space is F(x*) = (36.3032, 
18.1516). Moreover, the value of first constraint= the value of second constraint = 1.0. The distance from the utopian 
point is 40.5882. In generic, these results are achieved as the previous work by Alia (Gebreel, 2022) but with different 
values of variables in less time.              

6. Conclussion and Future Work  

     To conclude, it is important to study the existence of advanced Alia's methods to solve the multi-objective 

optimization problems in general. This work firstly finds the individual optimal of objectives. Then it constructs a 

plane passing through these individual optimal points, and search orthogonal to the plane. The flexibility of the 

structure can help to obtain the best compromise solution easily. The experiment results have demonstrated that the 
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proposed methods can provide a better solution in comparison with the previous works. It is also important to mention 

that the improved methods can be suitable and powerful classical optimization techniques used to solve the two 

classes of convex and non-convex optimization programming problems. Consequently, these reliable methods are 

useful for decision-makers to deal with such problems. They are implemented using LINGO software. 
For future work, this research will serve as a base for future studies to get the best solution quickly. Additionally, 

it is possible to apply these proposed methods successfully in more complex problems of the real-world. 
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